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The goal of super-resolution (SR) is to estimate a high-resolution (HR)
image from one or a set of low-resolution (LR) images. It is widely applied
in face recognition, medical imaging, HDTV etc.

Figure: Face recognition in video.
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The goal of super-resolution (SR) is to estimate a high-resolution (HR)
image from one or a set of low-resolution (LR) images. It is widely applied
in face recognition, medical imaging, HDTV etc.

Figure: Super-resolution in medical imaging.
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Super-resolution Methods

Interpolation-based methods
Fast but the HR image is usually blurred. E.g., bicubic
interpolation, NEDI.

Learning-based methods
Hallucinate textures from the HR/LR image pair database.

Reconstruction-based methods
Formalize an optimization problem constrained by the LR
image with various priors.
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Multivariate Normal Distribution

Definition

A random vector X = (X1, X,...,Xp) is said to be multivariate normally
(MVN) distributed if every linear combination of its components Y = a’ X
has a univariate normal distribution. Real-world random variables can
often be approximated as following a multivariate normal distribution.

The probability density function of X is

1
(2m)(p/2

where p is the mean of X and X is the covariance matrix.
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Multivariate Normal Distribution

Example

Bivariate normal distribution

10
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Multivariate Normal Distribution

Property 1
The joint distribution of two MVN random variables is also an MVN
distribution.

X2
211 X ]

Given X1 ~ N (pq,Z1), X2 ~ N(pp, X3) and X = [ X } we have

: 241
X ~ No(p1, X) with p = oy
P(/’L ) Wi 1 |: H2 :| |: 221 le
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Multivariate Normal Distribution

Property 2
The conditional distribution of the components of MVN are (multivariate)
normal.

The distribution of X1, given that X, = x2, is normal and has
Mean = p; + Z12X55 (x2 — o) (2)

Covariance = X1; — E1p¥, 1 ¥y (3)
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Gaussian Process

Definition

Gaussian Process (GP) defines a distribution over the function f, where
f is a mapping from the input space X to R, such that for any finite
subset of X, its marginal distribution P(f(x1),f(x2),...f(x,)) is a
multivariate normal distribution.

fIX ~ N(m(x), K(X, X)) (4)
where
X = {x1,x2,...,%Xp} (5)
m(x) = E[f(x)] (6)
k(xi,xj) = E [(f(Xi) — m(x))(F(x;)" — m(x")) (7)

and K(X, X) denotes the covariance matrix such that K;; = k(x;, x;).
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Gaussian Process

Formally, we write the Gaussian Process as
F(x) ~ GP(m(x), k(xi, x})) (8)

Without loss of generality, the mean is usually taken to be zero.

o Parameterized by the mean function m(x) and the covariance
function k(x;,x;)

@ Infer in the function space directly
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Gaussian Process Regression

Model:
f(x) ~ GP(m(x), k(xi,x})) (9)
Given the inputs X,, the output f, is
f. ~ N(0, K(Xy, X)) (10)

According to the Gaussian prior, the joint distribution of the training
outputs f, and the test outputs f, is

[ ff } NN<°’ [ ?&UQ) ?(g)((,:,);il)) D (11)
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Noisy Model

In reality, we do not have access to true function values but rather noisy
observations. Assuming independent indentically distributed noise, we
have the noisy model

y = f(x)+e, e~N(0,02) (12)
f(x) ~ GP(m(x),K(X,X)) (13)
Var(y) = Var(f(x)) + Var(e) = K(X, X) + o2/ (14)

Thus, the joint distribution for prediction is

Y] (o[ KOCX it KX T) g
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Referring to the previous property of the conditional distribution, we can
obtain

f. ~ N(F V() (16)
f. = KX, X)K(X,X)+02] 1y, (17)

V(F.) = K(X.,X.)—
K (X, X)[K(X, X) + a2 7LK(X, X,). (18)

y are the training outputs and f, are the test outputs, which are predicted
as the mean f.
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Marginal Likelihood

GPR model:
y = f+e (19)
f ~ GP(m(x),K) (20)
e ~ N(0,021) (21)

y is an n-dimensional vector of observations. Without loss of generality, let
m(x) = 0. Thus y|X follows a normal distribution with

E(y[X) = 0 (22)
Var(y|X) = K(X,X)+ o2l (23)
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Marginal Likelihood

Let K, = Var(y|X),

1 I 71
p(y|X) = Wexp {—2)! K, Y} (24)
The log marginal likelihood is

n 1 1 _
L = log p(y|X) = —Zlog 27 — Slog|K,| - 5fTKylf (25)
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Maximum a posteriori

Matrix derivative:

0y _ _yadY

- — 1

aX 8(9,'Y (26)
0 B _,0Y
alog Y| = tr(Y 39i) (27)

Gradient ascent:

oL 1 ¢ 40K 4 1 10K
%—zyK GG;K y 2t.“r(K 8‘9:') (28)

% is a matrix of derivatives of each element.
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Graphical Representation

Observations ® Y Ly

hed “
- BE B O

Model: y = f(x) +¢

Squares: observed pixels

Circles: unknown Gaussian field

Inputs (x): neighbors (predictors) of the target pixel
Outputs (y): pixel at the center of each 3 x 3 patch

Thick horizontal line: a set of fully connected nodes.
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Workflow

Stage 1: interpolation
Input LR patch
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Workflow

Stage 1: interpolation
Sample training targets
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Workflow

Stage 1: interpolation
SR based on Bicubic Interpolation

Stage 2: deblurring
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Workflow

Stage 1: interpolation

Stage 2: deblurring
Sample training targets
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Workflow

Stage 1: interpolation

Stage 2: deblurring
Obtain neighbors from the downsampled patch
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Workflow

Stage 1: interpolation

Stage 2: deblurring
SR based on the simulated blurring process
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Covariance Equation

@ defines the similarity between two points (vectors)
@ indicate the underlying distribution of functions in GP

@ Squared Exponential covariance function

k(xi,x;j) = o2 exp (_; (xi — xj)gz(Xi — Xj)) (29)

a% represents the signal variance and ¢ defines the characteristic
length scale.

Given an image |, the covariance between two pixels I; ; and I, , is
calculated as k(1(j jy,ns l(m,n),n), Where N means to take the 8 nearest
pixels around the pixel. Therefore, the similarity is based on the Euclidean
distance between the pixels’ neighbors.
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Covariance Equation

(

(a) Test point (b) Training patch (c) Covariance ma-
trix

@ Local similarity: high responses (red regions) from the training patch
are concentrated on edges

@ Global similarity: high-responsive regions also include other similar
edges within the patch

@ Conclusion: pixels embedded in a similar structure to that of the
target pixel in terms of the neighborhood tend to have higher weights
during prediction
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Hyperparameter Adaptation

Hyperparameters:
° a%: signal variance
@ 02: noise variance

@ (. characteristic length scale

- /l

) ¢ = 50, (d) £ = .05, (e) £ =
= 01 o, = .001 U,,:.14

(a) Test  (b) Training

(c
On
(c): MAP estimation

(d): Quickly varying field with low noise
(e): Slowly varyin field with high noise
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Hyperparameter Adaptation

Hyperparameters:
° a%: signal variance
@ 02: noise variance

@ (. characteristic length scale

- /l

) ¢ = 50, (d) £ = .05, (e) £ =
= 01 o, = .001 U,,:.14

(a) Test  (b) Training

(c
On
(c): MAP estimation

(d): Quickly varying field with low noise (high-frequncy artifacts)
(e): Slowly varyin field with high noise (too smooth)
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Hyperparameter Adaptation

Log marginal likelihood:

1 - 1 n
log p(y|X,0) = —Sy" K, ly — S log|Ky| — Slog 2 (30)
Maximize a posteriori (gradient descent):

oc 1 ¢ 40K o 1 10K
8—0[_§y K 80,-K y 2t‘r(K 09;) (31)

0 denotes the parameter set.
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(a) Input  (b) 3x direct magnification

(c) 10x our result (d) 10x detail synthesis
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(b) Our result
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(a) Bicubic (b) Edge statistics

(c) Patch redundancy (d) Ours
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(a) Bicubic (b) Edge statistics
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(a) Bicubic (b) Edge statistics
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(a) Bicubic (b) Edge statistics
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