
Super-resolution using Gaussian Process Regression
Final Year Project Interim Report

He He

Department of Electronic and Information Engineering
The Hong Kong Polytechnic Unviersity

December 30, 2010

() December 30, 2010 1 / 33



Outline

1 Introduction

2 Gaussian Process Regression
Multivariate Normal Distribution
Gaussian Process
Regression
Training

3 GPR for Super-resolution
Framework
Covariance Function

() December 30, 2010 2 / 33



Outline

1 Introduction

2 Gaussian Process Regression
Multivariate Normal Distribution
Gaussian Process
Regression
Training

3 GPR for Super-resolution
Framework
Covariance Function

() December 30, 2010 3 / 33



The goal of super-resolution (SR) is to estimate a high-resolution (HR)
image from one or a set of low-resolution (LR) images. It is widely applied
in face recognition, medical imaging, HDTV etc.

Figure: Face recognition in video.
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The goal of super-resolution (SR) is to estimate a high-resolution (HR)
image from one or a set of low-resolution (LR) images. It is widely applied
in face recognition, medical imaging, HDTV etc.

Figure: Super-resolution in medical imaging.
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Super-resolution Methods

Interpolation-based methods
Fast but the HR image is usually blurred. E.g., bicubic
interpolation, NEDI.

Learning-based methods
Hallucinate textures from the HR/LR image pair database.

Reconstruction-based methods
Formalize an optimization problem constrained by the LR
image with various priors.
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Multivariate Normal Distribution

Definition

A random vector X = (X1,X2, . . . ,Xp) is said to be multivariate normally
(MVN) distributed if every linear combination of its components Y = aTX
has a univariate normal distribution. Real-world random variables can
often be approximated as following a multivariate normal distribution.

The probability density function of X is

f (x) =
1

(2π)(p/2)|Σ|1/2
exp

{
1

2
(x− µ)TΣ−1(x− µ)

}
(1)

where µ is the mean of X and Σ is the covariance matrix.
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Multivariate Normal Distribution

Example

Bivariate normal distribution

µ = [1 1]′, Σ =

[
1 0
0 1

]
.
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Multivariate Normal Distribution

Property 1
The joint distribution of two MVN random variables is also an MVN
distribution.

Given X1 ∼ N (µ1,Σ1), X2 ∼ N (µ2,Σ2) and X =

[
X1

X2

]
, we have

X ∼ Np(µ,Σ) with µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ11

]
.
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Multivariate Normal Distribution

Property 2
The conditional distribution of the components of MVN are (multivariate)
normal.

The distribution of X1, given that X2 = x2, is normal and has

Mean = µ1 + Σ12Σ−122 (x2 − µ2) (2)

Covariance = Σ11 −Σ12Σ−122 Σ21 (3)
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Gaussian Process

Definition

Gaussian Process (GP) defines a distribution over the function f , where
f is a mapping from the input space X to R, such that for any finite
subset of X , its marginal distribution P(f (x1), f (x2), ...f (xn)) is a
multivariate normal distribution.

f|X ∼ N (m(x),K (X,X)) (4)

where

X = {x1, x2, . . . , xn} (5)

m(x) = E [f (x)] (6)

k(xi , xj) = E
[
(f (xi )−m(x))(f (xi )

T −m(xT ))
]

(7)

and K (X,X) denotes the covariance matrix such that Kij = k(xi , xj).
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Gaussian Process

Formally, we write the Gaussian Process as

f (x) ∼ GP(m(x), k(xi , xj)) (8)

Without loss of generality, the mean is usually taken to be zero.

Parameterized by the mean function m(x) and the covariance
function k(xi , xj)

Infer in the function space directly
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Gaussian Process Regression

Model:

f (x) ∼ GP(m(x), k(xi , xj)) (9)

Given the inputs X∗, the output f∗ is

f∗ ∼ N (0,K (X∗,X∗)) (10)

According to the Gaussian prior, the joint distribution of the training
outputs f, and the test outputs f∗ is[

f
f∗

]
∼ N

(
0,

[
K (X,X) K (X,X∗)
K (X∗,X) K (X∗,X∗)

])
. (11)
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Noisy Model

In reality, we do not have access to true function values but rather noisy
observations. Assuming independent indentically distributed noise, we
have the noisy model

y = f (x) + ε, ε ∼ N (0, σ2n) (12)

f (x) ∼ GP(m(x),K (X,X)) (13)

Var(y) = Var(f (x)) + Var(ε) = K (X,X) + σ2nI (14)

Thus, the joint distribution for prediction is[
y
f∗

]
∼ N

(
0,

[
K (X,X) + σ2nI K (X,X∗)

K (X∗,X) K (X∗,X∗)

])
(15)
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Prediction

Referring to the previous property of the conditional distribution, we can
obtain

f∗ ∼ N (̄f,V (f∗)) (16)

f̄∗ = K (X∗,X )[K (X ,X ) + σ2nI ]
−1y, (17)

V (f∗) = K (X∗,X∗)−
K (X∗,X )[K (X ,X ) + σ2nI ]

−1K (X ,X∗). (18)

y are the training outputs and f∗ are the test outputs, which are predicted
as the mean f̄.
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Marginal Likelihood

GPR model:

y = f + ε (19)

f ∼ GP(m(x),K) (20)

ε ∼ N (0, σ2nI) (21)

y is an n-dimensional vector of observations. Without loss of generality, let
m(x) = 0. Thus y |X follows a normal distribution with

E (y |X) = 0 (22)

Var(y |X) = K (X,X) + σ2nI (23)
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Marginal Likelihood

Let Ky = Var(y |X),

p(y|X) =
1

(2π)n/2|Ky |1/2
exp

{
−1

2
yTK−1y y

}
(24)

The log marginal likelihood is

L = log p(y|X) = −n

2
log 2π − 1

2
log |Ky | −

1

2
fTK−1y f (25)
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Maximum a posteriori

Matrix derivative:

∂

∂x
Y = −Y−1

∂Y

∂θi
Y−1 (26)

∂

∂x
log |Y| = tr (Y−1

∂Y

∂θi
) (27)

Gradient ascent:

∂L
∂θi

=
1

2
yTK−1

∂K

∂θi
K−1y − 1

2
tr(K−1

∂K

∂θi
) (28)

∂K
∂θi

is a matrix of derivatives of each element.
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Graphical Representation

Model: y = f (x) + ε

Squares: observed pixels

Circles: unknown Gaussian field

Inputs (x): neighbors (predictors) of the target pixel

Outputs (y): pixel at the center of each 3× 3 patch

Thick horizontal line: a set of fully connected nodes.
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Workflow

Stage 1: interpolation

Input LR patch

Stage 2: deblurring
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Workflow

Stage 1: interpolation

Sample training targets

Stage 2: deblurring
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Workflow

Stage 1: interpolation

SR based on Bicubic Interpolation

Stage 2: deblurring
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Workflow

Stage 1: interpolation

Stage 2: deblurring

Sample training targets
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Workflow

Stage 1: interpolation

Stage 2: deblurring

Obtain neighbors from the downsampled patch
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Workflow

Stage 1: interpolation

Stage 2: deblurring

SR based on the simulated blurring process
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Covariance Equation

defines the similarity between two points (vectors)

indicate the underlying distribution of functions in GP

Squared Exponential covariance function

k(xi , xj) = σ2f exp

(
−1

2

(xi − xj)
′(xi − xj)

`2

)
(29)

σ2f represents the signal variance and ` defines the characteristic
length scale.

Given an image I, the covariance between two pixels Ii ,j and Im,n is
calculated as k(I(i ,j),N , I(m,n),N), where N means to take the 8 nearest
pixels around the pixel. Therefore, the similarity is based on the Euclidean
distance between the pixels’ neighbors.
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Covariance Equation

(a) Test point (b) Training patch (c) Covariance ma-
trix

Local similarity: high responses (red regions) from the training patch
are concentrated on edges

Global similarity: high-responsive regions also include other similar
edges within the patch

Conclusion: pixels embedded in a similar structure to that of the
target pixel in terms of the neighborhood tend to have higher weights
during prediction
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Hyperparameter Adaptation

Hyperparameters:

σ2f : signal variance

σ2n: noise variance

`: characteristic length scale

(a) Test (b) Training (c) ` = .50,
σn = .01

(d) ` = .05,
σn = .001

(e) ` = 1.65,
σn = .14

(c): MAP estimation
(d): Quickly varying field with low noise

(high-frequncy artifacts)

(e): Slowly varyin field with high noise

(too smooth)
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Hyperparameter Adaptation

Log marginal likelihood:

log p(y|X ,θ) = −1

2
yTK−1y y − 1

2
log |Ky | −

n

2
log 2π (30)

Maximize a posteriori (gradient descent):

∂L
∂θi

=
1

2
yTK−1

∂K

∂θi
K−1y − 1

2
tr(K−1

∂K

∂θi
) (31)

θ denotes the parameter set.
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Results

(a) Bicubic (MSSIM=0.84) (b) GPP (MSSIM=0.84)

(c) Our result
(MSSIM=0.86)

(d) Ground truth
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Results

(a) Input (b) 3× direct magnification

(c) 10× our result (d) 10× detail synthesis
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Results

(a) GPP (b) Our result
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Results

(a) Bicubic (b) Edge statistics

(c) Patch redundancy (d) Ours
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Results

(a) Bicubic (b) Edge statistics

(c) Patch redundancy (d) Ours
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Results

(a) Bicubic (b) Edge statistics

() December 30, 2010 32 / 33



Results

(a) Bicubic (b) Edge statistics
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