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Text-to-text as a universal task interface

Learn any task as a text generation task

Figure: From Raffel et al., 2020
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https://arxiv.org/pdf/1910.10683.pdf


How to train a text generator

Maximum likelihood estimation (“teacher forcing”):

maximize
∑
x∈D

log pθ(x)

Bad estimation in low-density regionTruncate the tail of pθ

x
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How to train a text generator

Solution 1: Sample from the high density region

Decoding
top-p, top-k , temperature, ...

Bad estimation in low-density regionTruncate the tail of pθ

x
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How to train a text generator

Solution 2: Teach the model how to behave in low density regions

Reinforcement learning
trial and error

Bad estimation in low-density regionTruncate the tail of pθ

x
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Where does the feedback come from?

We often need to learn a model to judge the output:
• Summary saliency and faithfulness [Pasunuru and Bansal, 2018]
• Translation quality with respect to the reference [Sellam et al., 2020]
• Helpfulness of AI assistant’s response [Stiennon et al., 2020]

General recipe

1. Annotate data: (input, output, reward)
2. Learn a reward model: r : input × output → R
3. Finetune pθ to maximize expected reward
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Case study on machine translation

Motivation: improve MT quality using expert feedback [Freitag et al., 2021]

1. Train a reward model to predict per token error ∼80% accuracy
state enterprises and advantageous private

1 1 1 -1 -1
enterprise sentered the revolutionary base area

1 1 1 -1 -1 -1

2. Finetune the MLE-trained translation model pθ using REINFORCE
increasing reward

3. No improvement in BLEU (also see [Shu et al., 2021])
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Reward gaming
• Beat humans in boat racing (and finish the course!)

• Produce a list of sorted numbers (of the input list!)
return []

• Goodhardt’s law: metrics are not designed to evaluate and incentivize
behavior
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Are learned rewards more robust?

small error under preward, large error under pθ

x

preward(x)
pθ(x)

• Train reward model on some (off-policy) data

• Run reward model on on-policy data

(which is drifting)

• Reward model errors:

• Low reward on good behavior: missing modes
• High reward on bad behavior: potential loophole!

Rare undesirable behavior can be amplified through RL
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How can we test it?

Condition: reward model assigns high
reward to bad behavior

Result: bad behavior gets amplified
during RL

What could cause the condition?
• Annotation errors
• Spurious correlation
• Domain shift

Sudoku autofill as a testbed

Reward = how likely the sudoku is valid

r : R81 → [0, 1]
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Annotation errors
Annotator bias: some examples are misannotated systematically

Possibly more common as models become better:

Wikipedia-like, authoritative, formal
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Reward gaming due to annotation errors

0.05% label flip
RM accuracy = 99.3%
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Most are invalid
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Spurious correlation

Prevalent in supervised learning, including reward modeling

Features correlate with high reward on preward
• Short outputs tend to be more truthful [Lin et al., 2021]

• Outputs on common concepts are more likely to be correct [Razeghi et al.,
2022]

But could have low reward on pθ

11 / 22



Revisiting the machine translation example

What are spurious correlations in translation error prediction?
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Revisiting the machine translation example

Can we just remove the spurious feature?
• Many more spurious features

• the 66 countries and regions have been able to
conduct the evidence in the dissemination of the
virus in 2015

• the some parents have been able to conduct the
campaign day ...

• Large models may discover more obscure
spurious features
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Domain shift

Out of domain of the reward model

x

preward(x)
pθ(x)

• RM trained on English generations. How does it work on non-English
languages?

• RM trained on short text. How does it work on long text?
• Reward assignment is underspecified on unsupported regions
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Reward gaming due to domain shift
• Train translation model to maximize BLEURT [Sellam et al., 2020]
• BLEURT training data contain very few repetitions (0.05%)
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What can we do to fix it?

Approach 1: Restrict the policy

x

preward(x)
pθ(x)

• KL regularization towards the MLE solution

maximize expected reward − KL (pθ∥pMLE)
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KL regularization

+ Easy to implement (widely used)

- Hyperparameter tuning is
important - May not always work
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What can we do to fix it?

Approach 2: Fixing the reward

x

preward(x)
pθ(x)

• Update RM by collecting feedback on updated policies
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Iterative reward learning

Used by InstructGPT; need more thorough investigation
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Beyond RL

Learn from natural language feedback
• Critique: provide feedback on an output (model or human)

• Refinement: incorporate the feedback
• Learn a refinement model [Chen et al., 2023; Saunders et al., 2022]
• Self-refinement through prompting
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Summary

• Reward gaming has more real consequences as RLHF is widely used to
train LLMs

• Many open questions
• How to detect obscure gaming behavior in long generations

• New ways of reward/preference learning, e.g., modeling uncertainty
and ambiguity

• New forms of feedback: controlled generation vs RL
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Thank you

Richard Pang Vishakh Padmakumar Ankur Parikh

Reward Gaming in Conditional Text Generation. ACL 2023.
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