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Primal: Dual:

* μ is the Langrangian multiplier 

of the added constraint 

Results
In the experiment, we compare the performance of the proposed approach with regular SVM, 2C-SVM, 

and undersampling and oversampling techniques.

Conclusion
In this paper, we propose two modifications of Support Vector Machines to address the problem of 

classifying highly imbalanced datasets. We study their behaviour comprehensively using three comparison 

methods. The results show that the two proposed methods have a consistent improvement over SVM's 

performance. According to our experiments, 2C-SVM is comparable to other algorithms as well, which is 

neglected in the former studies. The re-sampling methods can mainly be criticized for changing the dataset 

and introducing unnecessary noise. We conclude that the proposed approaches are promising candidates for 

addressing the rare class problem.
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The results show that SVM (C+ = 0) achieves high score on G-mean and ROC-curve but is lower than 

the other algorithms in precision which results in a low F-measure. This can be explained by the hard 

constraints C+=0. While the recall rate is guaranteed by including most of the positive examples, it will 

inevitably include more negative examples. The second approach has a relatively better and more stable 

performance over all three metrics. In addition, although 2C-SVM has been proposed for quite a long 

time, it is not given much attention in previous work for addressing the imbalance problem. In our 

experiments 2C-SVM demonstrates decent performance. As for the re-sampling techniques, SMOTE has 

better overall performance than random undersampling, but both techniques have low F-measure scores. 

Table. 2. Experiment Results on 5 UCI datasets

Table. 1. Testing UCI datasets

Fig. 1. SVM on the dataset with 
imbalance ratio 1:1 

SVM on Imbalanced Datasets
The fact that the SVM solution only depends on a few support vectors makes it relatively robust to noise 

and moderate imbalance. However, when the datasets is severely imbalanced, SVM shows deterioration.

Experiment
From Fig.1 to Fig.3, as the imbalance becomes more severe, we can conclude that: 

 the number of support vectors in the positive class becomes less than the number in the negative class; 

 examples from the positive class tend to reside farther from the real boundary than those from the 

negative class; 

 the predicted decision boundary is pressed towards the rare class. 

Analysis

 Minor Imbalance

 Severe Imbalance





n

i

ii y
1

0
If there are more negative samples (yi = -1) than positive samples (yi = 1), then the 

positive class will have higher weights (αi).
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Higher weights increase the influence of the minority class, 

which automatically rebalances the skewed dataset.

Ci 
When support vectors of the negative class are much more than those of the positive class, 

αi  is made to equal the maximum value C.

11)( 0  ii

T

i xy  This is derived from the complementary slackness, indicating that the 

point has entered the margin or even crossed the decision boundary.

Fig. 3. SVM on the dataset with 
imbalance ratio 100:1 

Fig. 2. SVM on the dataset with 
imbalance ratio 10:1 

Introduction
In the literature, there are two major groups of methods to address the imbalance problem.

 Date level: oversampling the minority class or undersampling the majority class, e.g. SMOTE [1].

 Algorithmic level: cost-sensitive learning

2C-SVM [1] is the cost-sensitive version of SVM. It essentially reweights the examples to make the

error from the rare class more obvious to the classifier.

Primal: Dual:
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* γ is usually set to be the ratio of negative     

points over positive points 

Abstract
The problem of classification on highly imbalanced datasets has been studied extensively in the 

literature. Most classifiers show significant deterioration in performance when dealing with skewed 

datasets. In this paper, we first examine the underlying reasons for SVM's deterioration on 

imbalanced datasets.  We then propose two modifications for the soft margin SVM, where we change 

or add constraints to the optimization problem. The proposed methods are compared with regular 

SVM, cost-sensitive SVM and two re-sampling methods. Our experimental results demonstrate that 

this constrained SVM can consistently outperform the other associated methods.

Methods
Special Case of 2C-SVM
Based on the above analysis, to address the problem caused by , intuitively, we can set the

constraints to be for the negative class. Recalling the complementary slackness, we have

, which is equivalent to the hard margin SVM constraint; thus the modification can be

further illustrated as the 2C-SVM when .

Constraint on the Slack Variable
Inspired by the fact that misclassification of a positive example usually costs more than that of a

negative example, we add one constraint to the slack variables of the positive class to ensure that no

positive example is left out and solve the following optimization problem:
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