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The problem of classification on highly imbalanced datasets has been studied extensively in the ﬂrr}(l)né E'B P+ CZ S m(:n E Z Z aa; Yy K (X, Xj) B Z 2N Z H
literature. Most classifiers show significant deterioration in performance when dealing with skewed = == = <!
datasets. In this paper, we first examine the underlying reasons for SVM's deterioration on st.  Y.(B'X+B,)=21-& -
Imbalanced datasets. We then propose two modifications for the soft margin SVM, where we change : _ st Z a;Y; =0
or add constraints to the optimization problem. The proposed methods are compared with regular 6 20 for el = _
SVM, cost-sensitive SVM and two re-sampling methods. Our experimental results demonstrate that 0<é& <1 for iel W 0<¢q <C for 1el”
this constrained SVM can consistently outperform the other associated methods. 2. >0 \
2
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- of the added constraint o — 11 <0

Introduction ;<0

In the literature, there are two major groups of methods to address the imbalance problem.
e Date level: oversampling the minority class or undersampling the majority class, e.g. SMOTE [1].
e Algorithmic level: cost-sensitive learning

In the experiment, we compare the performance of the proposed approach with regular SVM, 2C-SVM,

2C-SVM [1] is the cost-sensitive version of SVM. It essentially reweights the examples to make the and undersampling and oversampling technigues.

error from the rare class more obvious to the classifier.

Table. 1. Testing UCI datasets
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* v is usually set to be the ratio of negative - _ Yeast(ME2) 3.44% 297 1187
points over positive points O0<a <(A-y)C for 1el” Yeast(ME1) 2.96% 297 1187

SVM on Imbalanced C

The fact that the SVM solution only depends on a few support vectors makes it relatively robust to noise

Table. 2. Experiment Results on 5 UCI datasets

and moderate imbalance. However, when the datasets is severely imbalanced, SVM shows deterioration. Dataset SVM  2C-SVM  SVM(C4 =0) SVM({y <¢) SMOTE  Undersmp
F-measure  0.6667 0.5714 0.6667 0.8333 0.8333 0.6111
Experiment Glass(5) G-mean  0.7071  0.8002 0.9674 0.9083 0.8452  0.9225
From Fig.1 to Fig.3, as the imbalance becomes more severe, we can conclude that: AUR  0.7500 0.8135 0.9654 05117 08571  0.9224
e the number of support vectors in the positive class becomes less than the number in the negative class; F-measure — 0.35160.4364 0.422] 0.4210 03035 0.2750
e examples from the positive class tend to reside farther from the real boundary than those from the Abolone(d)  G-mean 05330 0.9451 0.8944 0.8653 0.9503 0.9539
negative class: AUR 06507  0.9454 0.8975 0.8714 0.9503  0.9542
e the predicted decision boundary is pressed towards the rare class. F-measure  0.9039  0.9541 0.7647 0.9039 0.7161 0.6125
Car G-mean 0.9489 0.9533 0.9879 0.9489 0.9845 0.9748
AnaIySiS AUR 0.9500 0.9981 0.9880 0.9500 0.9846 0.9751
_ F-measure  0.9898 0.9898 0.9882 0.9898 0.9640 0.9370
= Jaliner ngelEnge Segment(1)  G-mean  0.9940  0.9927 0.9924 0.9927 09713  0.9792
Zn: ay. =0 It there are more negative samples (y; = -1) than positive samples (y; = 1), then the AUR 09907  0.9927 0.9924 0.9927 09717 09792
— 17 positive class will have higher weights (). F-measure  0.8493  0.8635 0.8663 0.8653 0.7702 0.7754
y=sign(>™" a,y,K(x %)+ /) Higher weights increase the influence of the minority class, Segment(3)  G-mean 09239  0.9405 0.9585 0.9422 0.9080  0.9425
=L AT 07 which automatically rebalances the skewed dataset. AUR 0.9248  0.9408 0.9585 0.9425 0.9083 0.9430
F-measure 0.2319 0.3529 0.2963 0.3546 0.3545 0.2791
> SBTES M2 e YeastME2) ~ G-mean 04378  0.7410 0.7688 0.7549 0.8111  0.8256
Vi ( ,BT X +3,)=1-¢& <1 This is derived from the complementary slackness, indicating that the AUR 0.5888  0.7617 0.7892 7722 ]172 0.8264
point has entered the margin or even crossed the decision boundary. E-measure  0.6364  0.5833 05667 0.6153 0.5909 0.5246
_ ~ When support vectors of the negative class are much more than those of the positive class, YeastMEL) — G-mean 07712 0978 0.9635 0.9803 0.90/0  0.9554
= AUR 07957  0.9783 0.9636 0.9805 0.9671 0.9585

! o; 1S made to equal the maximum value C.

R e 0P 2 e 3 constraints C,=0. While the recall rate is guaranteed by including most of the positive examples, it will
) ) e TE I Emeae inevitably include more negative examples. The second approach has a relatively better and more stable
0y o e @00 B of- == T o S e Temrs o A performance over all three metrics. In addition, although 2C-SVM has been proposed for quite a long
g S g - ﬁ@ef‘z T Teee, C e oTE e T o time, it is not given much attention in previous work for addressing the imbalance problem. In our

el +} e F i, e o e % - i experiments 2C-SVM demonstrates decent performance. As for the re-sampling techniques, SMOTE has
o5 e LT é i ) L o @ ) o . better overall performance than random undersampling, but both techniques have low F-measure scores.
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Fig. 1. SVM on the dataset with
imbalance ratio 1:1

Fig. 2. SVM on the dataset with
imbalance ratio 10:1

Fig. 3. SVM on the dataset with
imbalance ratio 100:1

The results show that SVM (C, = 0) achieves high score on G-mean and ROC-curve but is lower than
the other algorithms in precision which results in a low F-measure. This can be explained by the hard

Conclusion

In this paper, we propose two modifications of Support Vector Machines to address the problem of

classifying highly imbalanced datasets. We study their behaviour comprehensively using three comparison
methods. The results show that the two proposed methods have a consistent improvement over SVM's
performance. According to our experiments, 2C-SVM Is comparable to other algorithms as well, which is
neglected In the former studies. The re-sampling methods can mainly be criticized for changing the dataset
and introducing unnecessary noise. We conclude that the proposed approaches are promising candidates for
addressing the rare class problem.

Special Case of 2C-SVM

Based on the above analysis, to address the problem caused by ¢, =C, Intuitively, we can set the
constraints to be 0 < ¢, <C for the negative class. Recalling the complementary slackness, we have

y.(B' % + 3,) =1, which is equivalent to the hard margin SVM constraint; thus the modification can be
further illustrated as the 2C-SVM when
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