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Abstract—The problem of classification on highly imbal-
anced datasets has been studied extensively in the literature.
Most classifiers show significant deterioration in performance
when dealing with skewed datasets. In this paper, we first
examine the underlying reasons for SVM’s deterioration on
imbalanced datasets. We then propose two modifications for
the soft margin SVM, where we change or add constraints to
the optimization problem. The proposed methods are compared
with regular SVM, cost-sensitive SVM and two re-sampling
methods. Our experimental results demonstrate that this con-
strained SVM can consistently outperform the other associated
methods.
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I. INTRODUCTION

The problem of rare class classification (also known as
outlier analysis, anomaly detection, etc.) arises in various
areas including drug discovery, fraud detection and cancer
diagnosis, where the target class is heavily under-represented
in a sample. In real world applications, these datasets can
often have an imbalance ratio ranging from 10:1 to 100:1.
Usually the rare events or objects are of major interest and
are very costly if misclassified.

Most classifiers perform poorly on imbalanced datasets
since they are intended to maximize the accuracy. This
results in a simple decision: classify all data points to the
negative (common) class; this decision will still maintain
high accuracy. The two main approaches to address this
problem are to rebalance the dataset, or modify the al-
gorithm. The first approach operates on the data level by
either oversampling the minority class or undersampling the
majority class. However, these methods make distributional
assumptions about the data, and they could easily elimi-
nate important samples and introduce noise. Alternatively,
Chawla et al. [1] have developed a popular sampling method:
the Synthetic Minority Oversampling Technique (SMOTE).
It inserts new samples in between the identified neighbors
and the instance to be oversampled. At the algorithm level,
major efforts have been put on cost-sensitive learning, where
a higher penalty is assigned to misclassified positive data
points. This method indeed biases the classifier toward the
positive class to improve the detection rate of the rare

objects.
In this paper, we modify the constraints of the optimiza-

tion problem of support vector machines (SVM) in two
ways. For the first approach, we derive an extreme case of
2C-SVM [2]. The second approach adds one constraint to
the soft margin SVM in order to forbid the positive data
points from crossing the decision boundary.

The rest of the paper is organized as follows. Section
2 gives a brief overview of SVMs and investigates the
reason for its degradation on imbalanced datasets. Section
3 presents the proposed modification of SVM and Section
4 shows the experimental results. Section 5 concludes the
paper with a summary.

II. BACKGROUND

A. Soft Margin SVM

Support Vector Machines are considered the state-of-
the-art classification method. According to the Structural
Risk Minimization Principle [3], SVM aims to find the
best separating hyperplane of the data. This results in the
following optimization problem, where xi is the vector of
the i-th training sample, yi is its class label, β and α are
hyperplane parameters, C is the regularization parameter, K
represents the kernel function, and ξi is the slack variable
which allows for some points to be on the wrong side of the
margin:

Primal:

min
β,β0,ξi
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βTβ + C

n∑
i=1

ξi
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Figure 1. SVM on the dataset with balance ratio 1:1

Figure 2. SVM on the dataset with imbalance ratio 10:1

Figure 3. SVM on the dataset with imbalance ratio 100:1

B. SVM on Imbalanced Datasets

The fact that the SVM solution only depends on a few
support vectors makes it relatively robust to noise and
moderate imbalance. The simple experiment below gives
some insight into SVM’s behavior on skewed datasets. The
positive sample is uniformly distributed between y = −1
and y = 0 and the negative samples are between y = 1 and
y = 0. Obviously, the ideal boundary is the x axis. Figure
1 to Figure 3 show the classification boundary for datasets
with increasing imbalance ratios. Support vectors are shown
as circled points.

Figure 4. Ratio of number of support vectors vs. Imbalance ratio

Several observations from these experimental results are
summarized as follows:
• When the distribution is highly skewed, the number of

support vectors in the positive class is less than the
number in the negative class.

• Examples from the positive class tend to reside farther
from the real boundary than those from the negative
class.

• As the imbalance becomes more severe, the predicted
decision boundary is pressed towards the rare class.

The equality constraint
∑n
i=1 αiyi = 0 indicates that if

there are more negative samples than positive samples, i.e.
if more yi equal -1 than +1, then the positive class will have
higher αi values in order to guarantee a zero sum. In the
decision function y = sign(

∑n
i=1 αiyiK(x, xi) + β0), αi

can be regarded as the weight of each example; thus larger
αi values essentially increase the influence of the minority
class, which automatically rebalances the skewed dataset.

However, if the size of the negative class keeps growing,
its support vectors can be much more than the positive
class’, making some αi of the positive instances equals C.
According to the complementary slackness, when αi = C ,
yi(β

Txi + β0) = 1 − ξi < 1. This indicates that the data
point enters the margin or even crosses the decision bound-
ary, which explains why SVM has a degrading performance
on highly imbalanced datasets.

C. 2C-SVM

In standard soft margin SVM, the penalty parameter C is
the same for both classes. As a result, even if all the positive
examples are ignored, this loss is still acceptable since there
are so few of them. To address this problem, the cost-
sensitive version of SVM is proposed in [2]. It essentially
re-weights (denoted by C+ and C−) the examples to make
the error from the rare class more obvious to the classifier.
In the optimization problem, 2C-SVM has the penalty term
Cγ

∑
i∈I+ ξi +C(1− γ)

∑
i∈I− ξi. To balance the dataset,

γ is usually set to be the ratio of the number of negative
instances to the number of positive instances.



III. MODIFICATION OF SVM

A. Special Case of 2C-SVM

As mentioned before, in highly imbalanced datasets,
positive examples end up entering the margin or crossing
the decision boundary. Thus, we can intuitively change the
constraint 0 ≤ α ≤ C to 0 ≤ α < C for the rare
class. Recalling the complementary slackness condition, for
αi = 0 or 0 < αi < C , we have yi(β

Txi + β0) ≥ 1 .
This is equivalent to the hard margin SVM constraint; thus
the modification can be further illustrated as the 2C-SVM
when γ = 0.

B. Constraint on the Slack Variable

In reality, misclassification of a positive example usually
costs more than that of a negative example. To ensure that
no positive example is left out, we add one constraint to the
slack variables of the positive class and solve the following
optimization problem:

Primal:

min
β,β0,ξi

1

2
βTβ + C

n∑
i=1

ξi

s.t. yi(β
Txi + β0) ≥ 1− ξi

ξi ≥ 0 for i ∈ I−

0 ≤ ξi ≤ 1 for i ∈ I+

Dual:
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α
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2
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−
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s.t.

n∑
i=1

αiyi = 0

0 ≤ αi ≤ C for i ∈ I−
αi ≥ 0

µi ≥ 0 for i ∈ I+

αi − µi ≤ C

Here, µi is the lagrange multiplier of the added constraint.
Since ξi actually measures the distance of the point from

the margin, making 0 ≤ ξi ≤ 1 for the positive class
can forbid the point from crossing the decision boundary
( yi(βTxi + β0) ≥ 1 − ξi ≥ 0 ), although it can still
enter the margin. As shown in the previous experiment, the
decision boundary tends to press on the positive class. Here
it is pushed back to the negative class.

However, one potential problem is that the extreme con-
straint can make the classifier sensitive to noise. Even
one outlier can pull the decision boundary far into the

negative class. To avoid the affect of noise, we can properly
extend the upper bound on ξi so that the new constraint is
0 ≤ ξi ≤ θ for i ∈ I+ where θ is the variable controlling
how far the point can cross the decision boundary. In our
experiments, we have tried θ from 1 to 1.3.

IV. EXPERIMENT

A. Evaluation Metrics

Since the accuracy over the whole dataset cannot ob-
jectively indicate the true performance of the classifier
on imbalanced datasets, sensitivity (true positive rate) and
specitivity (true negative rate) are defined to address the
accuracy of both classes. Subsequently, G-mean [4] is pro-
posed as a means of combining the two measurements:

G−mean =
√
sensitivity · specificity (1)

To examine the classifier’s performance mainly on the rare
class, the F-measure [5] is defined as the harmonic mean of
recall and precision:

F −measure = 2 · recall · precision
recall + precison

(2)

Another important evaluation metric is the area under
ROC curve (AUR) [6], which is unaffected by the class
distribution and different error costs.

B. Results

In the experiment, we compare the performance of the
proposed approach with regular SVM, 2C-SVM, and un-
dersampling and oversampling techniques. Undersampling is
implemented by random sampling [7] which is empirically
shown to be simple but effective. Oversampling is imple-
mented by SMOTE [1]. Each training dataset is normalized
before classification. A Gaussian kernel is used for all the
datasets and 10-fold cross validation is utilized to select the
best model. In 2C-SVM, γ is set to be the percentage of
negative instances.

We use five UCI datasets with different imbalance ratios
to test the classifiers as shown in Table I. Each dataset
is randomly divided into a training set and test set. All
the measurements are computed by the perf code pro-
vided by http://kodiak.cs.cornell.edu/kddcup/software.html.
The results are shown in Table II.

C. Analysis

The results show that SVM (C+ = 0) achieves high score
on G-mean and ROC-curve; however, it is obviously lower
than the other algorithms in precision which results in a low
F-measure. This can be explained by the hard constraints
C+ = 0. While the recall rate is guaranteed by including
most of the positive examples, it will inevitably include more
negative examples. The second approach, SVM (ξ+ ≤ θ),
has a relatively better and more stable performance over
all three metrics. In addition, although 2C-SVM has been



Table I
EXPERIMENT DATASETS

Dataset Imbalanced Rate Training Set Test Set
Glass(5) 6.07% 108 106

Abalone(4) 1.36% 417 3760
Car 3.76% 345 1383

Segment(1) 14.29% 231 2079
Segment(3) 14.29% 231 2079
Yeast(ME2) 3.44% 297 1187
Yeast(ME1) 2.96% 297 1187

proposed for quite a long time, it is not given much attention
in previous work for addressing the imbalance problem.
However, in our experiments 2C-SVM demonstrates decent
performance. As for the re-sampling techniques, SMOTE
has better overall performance than random undersampling,
but both techniques have low F-measure scores.

V. CONCLUSION

In this paper, we propose two modifications of Support
Vector Machines to address the problem of classifying
highly imbalanced datasets. Four versions of SVM as well
as two re-sampling techniques are compared: regular SVM,
cost-sensitive 2C-SVM, the modified 2C-SVM (C+ = 0),
SVM (ξ+ ≤ θ), SMOTE oversampling, and random un-
dersampling. We studied their behavior comprehensively
using three comparison methods. The results show that the
two proposed methods have a consistent improvement over
SVM’s performance. According to our experiments, 2C-
SVM is comparable to other algorithms as well, which is
neglected in the former studies. The re-sampling methods
can mainly be criticized for changing the dataset and intro-
ducing unnecessary noise. We conclude that the proposed
approaches are promising candidates for addressing the rare
class problem.
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