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Chain-of-thought (CoT) prompting

Figure: [Wei et al., 2022]

• CoT: interpretable proof steps in natural language
• Showing the model how to reason improves performance significantly
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CoT is a prompting method that demonstrates how to solve a task. In standard prompting, we give the model input/output pairs in the prefix. In CoT, we additional include how the answer is derived. This technique has shown to significantly improve performance on certain reasoning tasks like math word problems.



To what extent can LLMs reason

Lots of questions on how LLMs reason:
• Is the answer provable from the generated CoT?
• Does the reasoning ability depend on real-world knowledge?
• What deduction rules are used?
• What mistakes do they make?

Need to inspect the generated CoT in addition to the label accuracy
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Could the model somehow produce the answer even given the wrong reasoning?



Most of the datasets are math word problems in real-world scenarios. It is likely that the model has seen similar text in pretraining. So is it retrieving from the training data or actually reason in the given scenario?



 The improvement is surprising, but there are lot of unanswered questions about the reasoning capabilities of LLMs. For example, is the model actually deriving the answers from the generated CoTs, or is it using other heuristics? Does the reasoning ability come from similar text from pretraining? If the model is indeed able to reason, then what deduction rules are they using and what kind of mistakes do they make? In order to answer this question, we need to analyze the generated CoT in addition to measuring the label accuracy. 



PrOntoQA: a synthetic QA dataset for reasoning

Structure of an example (including CoT):

Key features:
• Parseable: easy to convert between CoTs and formal proofs
• Programmable: easy to vary the degrees of complexity of the examples
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 We cannot automatically analyze the CoTs in math word problems or other real-world datasets. So we build a synthetic QA dataset. Each example in this dataset consists a context, or a set of facts we an reason over, a query such as given that Fae is a cat, can we conclude that Fae is not herbivorous, a T/F label of the query, and a CoT which is a natural language proof of the answer. The key advantage of this dataset is that it allows for easy convertion between CoTs and formal proofs, which we can easily analyze. In addition, we can also vary the degrees of the complexity of these examples for controlled study. 



Generative process of the dataset

• Examples are translated from the ontology and a proof
• Only using modus ponens: given “All cats are carnivores” and “Fae is a cat” we

conclude “Fae is a carnivore”.
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 To generate the data, we start with an ontology, where each node is an entity (e.g., mammal) with an optional attribute (e.g., warm-blooded). Then we generate a formal proof from the ontology. The context of the question is translated from the ontology and the natural language CoT is translated from the proof. When generating the proof, we are only using the modus ponens deduction rule. 



Evaluating CoTs

For each proof step in the CoT, we ask
• Validity: Is it provable from previous steps?

• Strictly valid: provable using modus ponens

• Broadly valid: provable using additional deduction rules
Cats are carnivores; Carnivores are mammals
=⇒ Cats are mammals

• Invalid: otherwise
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 Remember that our goal is to analyze the CoT. Specifically, we look at each step in the proof, and we check it from the following aspects. The first question we ask is whether the step can be proved from previous steps, i.e. the validity of the proof. We further differentiate strictly valid steps, which can be proved using only the modus ponens rule, and broadly valid steps, which requires additional deduction rules. 



Evaluating CoTs

For each proof step in the CoT, we ask
• Validity: Is it provable from previous steps?

• Strictly valid: provable using modus ponens

• Broadly valid: provable using additional deduction rules
Cats are carnivores; Carnivores are mammals
=⇒ Cats are mammals

• Invalid: otherwise

6 / 19



 Remember that our goal is to analyze the CoT. Specifically, we look at each step in the proof, and we check it from the following aspects. The first question we ask is whether the step can be proved from previous steps, i.e. the validity of the proof. We further differentiate strictly valid steps, which can be proved using only the modus ponens rule, and broadly valid steps, which requires additional deduction rules. 



Evaluating CoTs

For each proof step in the CoT, we ask
• Atomicity: Is it provable with exactly one application of a deduction rule?

• Atomic: needs one application of the deduction rule

• Non-atomic: otherwise (all broadly valid steps are non-atomic)
Fae is a cat. (Cats are carnivores.)
=⇒ Fae is a carnivore.
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 The second question we ask is whether the step can be proved with exactly one application of a deduction rule, i.e. an atomic step. The motivation is that when humans verbalize their reasoning process, they often skip steps. For example, ... 
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Evaluating CoTs

For each proof step in the CoT, we ask
• Utility: Does it lead to a useful conclusion?

• Misleading: the conclusion is not in the gold proof
Query: Fae is not herbivorous.

Fae is a carnivore.

Carnivores are not herbivorous.

Every carnivore is a mammal

• Correct: otherwise
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 Finally, we look at the utility of a step. Given the context there are many things we can prove but not all are relevant to the query. For example, suppose the query is Fae is not herbivorous. Given the premise, ... So here we check whether the conclusion of that step is in the gold proof. 
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 Finally, we look at the utility of a step. Given the context there are many things we can prove but not all are relevant to the query. For example, suppose the query is Fae is not herbivorous. Given the premise, ... So here we check whether the conclusion of that step is in the gold proof. 



Experiment setup

• Models: text-ada-001, text-babbage-001, text-curie-001, davinci,
text-davinci-001, text-davinci-002

• Decoding: greedy decoding

• Data: we control the complexity of the problem through the following variables
• Number of hops: 1, 3, 5
• Ontology type:
• Fictional: zumpuses are wumpuses
• False: cats are herbivorous
• True: cats are mammals
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 So we are going to analyze each steps in the CoT from the three aspects just described using our dataset. We tested on a range of GPT-3 models. Similar to many other works, we find that only large models is able to perform such tasks beyond chance accuracy, so the following results are based on the largest, instruction tuned model. We use greedy decoding so there's no stochasticity during decoding. And we test in multiple settings by varying the number of hops and the ontology type. 



Is label accuracy correlated with proof accuracy?
• Strict proof accuracy: every step is strictly-valid, atomic, correct (i.e. canonical)
• Valid proof accuracy: every step is strictly- or broadly-valid (can be non-atomic

or misleading)

• Each dot is one experiment we ran.
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Label accuracy largely correlates with valid proof accuracy
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no generalization of deduction rules, no skipping steps, no misleading steps



 The first question we want to answer is whether correct answer prediction implies correct reasoning process. To answer that we need a metric for the proof. We consider two metrics: the first is very strict and only considers step that is strictly valid, atomic and not misleading, or canonical steps. The second is more permissive, and considers any valid step to be correct. Clearly, the proof accuracy is strongly correlated with label accuracy using the permissive metric, which suggests that the answers are derived from the proof. 
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no generalization of deduction rules, no skipping steps, no misleading steps



 The first question we want to answer is whether correct answer prediction implies correct reasoning process. To answer that we need a metric for the proof. We consider two metrics: the first is very strict and only considers step that is strictly valid, atomic and not misleading, or canonical steps. The second is more permissive, and considers any valid step to be correct. Clearly, the proof accuracy is strongly correlated with label accuracy using the permissive metric, which suggests that the answers are derived from the proof. 



How does model size affect reasoning capability?

Only text-davinci-002 (davinci+RLHF+code?) can do our task at a reasonable accuracy
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Proof accuracy vs number of hops
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Long proofs are still challenging
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 Next we look at proof accuracy vs number of hops, or the number of deduction steps. For now we only need to focus on the area of the red bars vs the blue bars, which indicates propotions of correct vs incorrect proofs. Clearly, as the number of hops increases, the accuracy drops, suggesting that long proofs are still challenging for these models. 



Proof accuracy vs ontology type

Fictional ontology

False ontology

True ontology

Real-world knowledge helps reasoning: fictional ≈ false� true
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 Next, we want to know if real-world knowledge has an impact on proof accuracy. For example, if the model already know that cats are multicellular, it doesn't have to completely rely on CoT. Here we do see that under true ontology that's consistent with the real world, models perform much better. Whereas under fictional or false ontology 



How do LLMs reason step-by-step?
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• The majority of proof steps are canonical (93.2%)
• We break down proofs by the type of non-canonical steps they

use
• Each bar denotes the proportion of proofs that contain a step of

that particular type
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LLMs tend to skip steps, just as humans do when
verbalizing their reasoning
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Most incorrect proofs contain misleading or in-
valid steps
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What leads to a mistake?

Break down of incorrect proofs by the first non-canonical step

text-ada-001 text-babbage-001 text-curie-001 davinci text-davinci-001 text-davinci-002
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Fictional ontology, 3 hops, top-down sentence ordering

• Smaller models suffer from invalid steps and skipping steps
• Larger models suffer most from misleading steps
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Example incorrect proof

Context: Every jompus is cold. Every jompus is a wumpus. Wumpuses are happy.
Wumpuses are numpuses. Every numpus is not fruity. Every numpus is a dumpus.
Every impus is fruity.
Query: Alex is a jompus. True or false: Alex is fruity.
Predicted answer:

Alex is a jompus. Every jompus is a wumpus. Alex is a wumpus.
Wumpuses are numpuses. Alex is a numpus.

[wrong turn] Every numpus is a
dumpus. [invalid] Dumpuses are impuses. Alex is an impus. Impuses are fruity.
Alex is fruity. True

Gold answer:

Alex is a jompus. Every jompus is a wumpus. Alex is a wumpus.
Wumpuses are numpuses. Alex is a numpus.

Every numpus is not fruity. Alex is not
fruity. False
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Summary

What we know about CoT reasoning:
• Answers are indeed derived from the reasoning steps

• Most individual reasoning steps are strictly-valid

• Models struggle with proof planning: it does not systematically explore different
branches when multiple valid steps are available

• (Self-consistency and DFS demonstrations didn’t improve it.)
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