
Reward Gaming in Conditional Text Generation

He He

ICLR Workshop on Trustworthy and Reliable Large-Scale Machine Learning
Models

May 4, 2023

1 / 22



Text-to-text as a universal task interface

Learn any task as a text generation task

Figure: From Raffel et al., 2020

2 / 22



 With the the development of large scale language models, many tasks are now formulated as a text to text task, including not only traditional text generation tasks like summarization and machine translation, but also structured prediction and reasoning problems. 

https://arxiv.org/pdf/1910.10683.pdf


How to train a text generator

Maximum likelihood estimation (“teacher forcing”):

maximize
∑
x∈D

log pθ(x)

Bad estimation in low-density regionTruncate the tail of pθ

x

3 / 22



 The key learning question now becomes: how do we train a text generator. The standard approach is to use Maximum likelihood estimation, or teacher forcing. Given a dataset, the goal is to maximize the likelihood of the observed text output. However, if we do not have enough data to cover a certain region, which is common in high dimensional space like text, our model will have bad estimates. As a result, it may generate incoherent or non-sensical text. 



How to train a text generator

Maximum likelihood estimation (“teacher forcing”):

maximize
∑
x∈D

log pθ(x)

Bad estimation in low-density regionTruncate the tail of pθ

x

3 / 22



 The key learning question now becomes: how do we train a text generator. The standard approach is to use Maximum likelihood estimation, or teacher forcing. Given a dataset, the goal is to maximize the likelihood of the observed text output. However, if we do not have enough data to cover a certain region, which is common in high dimensional space like text, our model will have bad estimates. As a result, it may generate incoherent or non-sensical text. 



How to train a text generator

Solution 1: Sample from the high density region

Decoding
top-p, top-k , temperature, ...

Bad estimation in low-density regionTruncate the tail of pθ

x

3 / 22



 One solution is to use better decoding algorithms. Specifically, we want to truncate the tail of the learned distribution which may have bad estimates and concentrate on the high density regions. This is essentially what top K or top p decoding is trying to do. 



How to train a text generator

Solution 2: Teach the model how to behave in low density regions

Reinforcement learning
trial and error

Bad estimation in low-density regionTruncate the tail of pθ

x

3 / 22



 Another argubly more fundamental approach to tackle this problem is to teach the model how to behave in the low density regions. We generate samples from the model and get additional supervision on these samples that hopefully cover the low data area. 



Where does the feedback come from?

We often need to learn a model to judge the output:
• Summary saliency and faithfulness [Pasunuru and Bansal, 2018]
• Translation quality with respect to the reference [Sellam et al., 2020]
• Helpfulness of AI assistant’s response [Stiennon et al., 2020]

General recipe

1. Annotate data: (input, output, reward)
2. Learn a reward model: r : input × output → R
3. Finetune pθ to maximize expected reward

4 / 22



 RL is a nice framework, but it introduces a new challenge: where does the feedback or the reward come from? In games like Atari or Go, the reward is well defined. However, in many NLP tasks, we don't have a robust metric for the quality we want to measure, such as whether a summary covers salient points and is faithful to the document, or whether a dialogue response is helpful. 



 Instead, we annotate the quality of model outputs, and train a reward model on these annotations, which will predict the reward of any output. Then we finetune the generation model to maximize the expected reward. 



Where does the feedback come from?

We often need to learn a model to judge the output:
• Summary saliency and faithfulness [Pasunuru and Bansal, 2018]
• Translation quality with respect to the reference [Sellam et al., 2020]
• Helpfulness of AI assistant’s response [Stiennon et al., 2020]

General recipe

1. Annotate data: (input, output, reward)
2. Learn a reward model: r : input × output → R
3. Finetune pθ to maximize expected reward

4 / 22



 RL is a nice framework, but it introduces a new challenge: where does the feedback or the reward come from? In games like Atari or Go, the reward is well defined. However, in many NLP tasks, we don't have a robust metric for the quality we want to measure, such as whether a summary covers salient points and is faithful to the document, or whether a dialogue response is helpful. 



 Instead, we annotate the quality of model outputs, and train a reward model on these annotations, which will predict the reward of any output. Then we finetune the generation model to maximize the expected reward. 



Case study on machine translation

Motivation: improve MT quality using expert feedback [Freitag et al., 2021]

1. Train a reward model to predict per token error ∼80% accuracy
state enterprises and advantageous private

1 1 1 -1 -1
enterprise sentered the revolutionary base area

1 1 1 -1 -1 -1

2. Finetune the MLE-trained translation model pθ using REINFORCE
increasing reward

3. No improvement in BLEU (also see [Shu et al., 2021])

5 / 22



 So, how well does this approach work? Let's consider a case study on machine translation. Here we have expert feedback on whether a segment in the output contains translation error (indicated by the red text). Then naturally we can train a reward model to predict whether each token has a translation error. And we finetune the translation model to maximize the reward. However, both our results and other works show that there is marginal improvement in translation quality after RL. And we have confirmed that the reward model has more than 80% accuracy and reward is increasing during RL so optimization is working, what is the problem then? 



Case study on machine translation

Motivation: improve MT quality using expert feedback [Freitag et al., 2021]

1. Train a reward model to predict per token error ∼80% accuracy
state enterprises and advantageous private

1 1 1 -1 -1
enterprise sentered the revolutionary base area

1 1 1 -1 -1 -1

2. Finetune the MLE-trained translation model pθ using REINFORCE
increasing reward

3. No improvement in BLEU (also see [Shu et al., 2021])

5 / 22



 So, how well does this approach work? Let's consider a case study on machine translation. Here we have expert feedback on whether a segment in the output contains translation error (indicated by the red text). Then naturally we can train a reward model to predict whether each token has a translation error. And we finetune the translation model to maximize the reward. However, both our results and other works show that there is marginal improvement in translation quality after RL. And we have confirmed that the reward model has more than 80% accuracy and reward is increasing during RL so optimization is working, what is the problem then? 



Case study on machine translation

Motivation: improve MT quality using expert feedback [Freitag et al., 2021]

1. Train a reward model to predict per token error ∼80% accuracy
state enterprises and advantageous private

1 1 1 -1 -1
enterprise sentered the revolutionary base area

1 1 1 -1 -1 -1

2. Finetune the MLE-trained translation model pθ using REINFORCE
increasing reward

3. No improvement in BLEU (also see [Shu et al., 2021])

5 / 22



 So, how well does this approach work? Let's consider a case study on machine translation. Here we have expert feedback on whether a segment in the output contains translation error (indicated by the red text). Then naturally we can train a reward model to predict whether each token has a translation error. And we finetune the translation model to maximize the reward. However, both our results and other works show that there is marginal improvement in translation quality after RL. And we have confirmed that the reward model has more than 80% accuracy and reward is increasing during RL so optimization is working, what is the problem then? 



Reward gaming
• Beat humans in boat racing (and finish the course!)

• Produce a list of sorted numbers (of the input list!)
return []

• Goodhardt’s law: metrics are not designed to evaluate and incentivize
behavior

6 / 22



In fact, similar problems are observed in many other RL tasks.



 Asking the model to beat humans in boat racing, it will circle around several obstacles, destroy them over and over again to gain points, instead of finishing the race. 



 If we ask the model to produce a list of sorted numbers, it will output an empty list which always satisfies the ask. 



The problem is reward is always a proxy. It is meant to measure certain desired outcome but does not specify the desired behavior to achieve that outcome. Thus we must be careful to avoid unintended consequences when using metrics to evaluate and incentivize behavior. 



Reward gaming
• Beat humans in boat racing (and finish the course!)

• Produce a list of sorted numbers (of the input list!)
return []

• Goodhardt’s law: metrics are not designed to evaluate and incentivize
behavior

6 / 22



In fact, similar problems are observed in many other RL tasks.



 Asking the model to beat humans in boat racing, it will circle around several obstacles, destroy them over and over again to gain points, instead of finishing the race. 



 If we ask the model to produce a list of sorted numbers, it will output an empty list which always satisfies the ask. 



The problem is reward is always a proxy. It is meant to measure certain desired outcome but does not specify the desired behavior to achieve that outcome. Thus we must be careful to avoid unintended consequences when using metrics to evaluate and incentivize behavior. 



Reward gaming
• Beat humans in boat racing (and finish the course!)

• Produce a list of sorted numbers (of the input list!)
return []

• Goodhardt’s law: metrics are not designed to evaluate and incentivize
behavior

6 / 22



In fact, similar problems are observed in many other RL tasks.



 Asking the model to beat humans in boat racing, it will circle around several obstacles, destroy them over and over again to gain points, instead of finishing the race. 



 If we ask the model to produce a list of sorted numbers, it will output an empty list which always satisfies the ask. 



The problem is reward is always a proxy. It is meant to measure certain desired outcome but does not specify the desired behavior to achieve that outcome. Thus we must be careful to avoid unintended consequences when using metrics to evaluate and incentivize behavior. 



Are learned rewards more robust?

small error under preward, large error under pθ

x

preward(x)
pθ(x)

• Train reward model on some (off-policy) data

• Run reward model on on-policy data

(which is drifting)

• Reward model errors:

• Low reward on good behavior: missing modes
• High reward on bad behavior: potential loophole!

Rare undesirable behavior can be amplified through RL

7 / 22



 The main question we study in this work is how learned reward models are gamed. Let's think about the training process. We train the reward model on some data, which are generated by a different model from p theta, the model we will finetune. We then apply the reward model to p theta, which is continuously updated during training, so the data distribution from p theta will be drifting. When the different between the two distribution is large enough, errors from the reward model will kick in. It could underestimate the reward, but this is okay if we are fine with missing good generations. The worse case is overestimating the reward, which creats a loophole for gaming behavior. 



 Our main empirical result is to show that a minor error in the reward model can be amplified during RL. 



Are learned rewards more robust?

small error under preward, large error under pθ

x

preward(x)
pθ(x)

• Train reward model on some (off-policy) data
• Run reward model on on-policy data

(which is drifting)
• Reward model errors:

• Low reward on good behavior: missing modes
• High reward on bad behavior: potential loophole!

Rare undesirable behavior can be amplified through RL

7 / 22



 The main question we study in this work is how learned reward models are gamed. Let's think about the training process. We train the reward model on some data, which are generated by a different model from p theta, the model we will finetune. We then apply the reward model to p theta, which is continuously updated during training, so the data distribution from p theta will be drifting. When the different between the two distribution is large enough, errors from the reward model will kick in. It could underestimate the reward, but this is okay if we are fine with missing good generations. The worse case is overestimating the reward, which creats a loophole for gaming behavior. 



 Our main empirical result is to show that a minor error in the reward model can be amplified during RL. 



Are learned rewards more robust?

small error under preward, large error under pθ

x

preward(x)
pθ(x)

• Train reward model on some (off-policy) data
• Run reward model on on-policy data (which is drifting)

• Reward model errors:

• Low reward on good behavior: missing modes
• High reward on bad behavior: potential loophole!

Rare undesirable behavior can be amplified through RL

7 / 22



 The main question we study in this work is how learned reward models are gamed. Let's think about the training process. We train the reward model on some data, which are generated by a different model from p theta, the model we will finetune. We then apply the reward model to p theta, which is continuously updated during training, so the data distribution from p theta will be drifting. When the different between the two distribution is large enough, errors from the reward model will kick in. It could underestimate the reward, but this is okay if we are fine with missing good generations. The worse case is overestimating the reward, which creats a loophole for gaming behavior. 



 Our main empirical result is to show that a minor error in the reward model can be amplified during RL. 



Are learned rewards more robust?

small error under preward, large error under pθ

x

preward(x)
pθ(x)

• Train reward model on some (off-policy) data
• Run reward model on on-policy data (which is drifting)
• Reward model errors:

• Low reward on good behavior: missing modes
• High reward on bad behavior: potential loophole!

Rare undesirable behavior can be amplified through RL

7 / 22



 The main question we study in this work is how learned reward models are gamed. Let's think about the training process. We train the reward model on some data, which are generated by a different model from p theta, the model we will finetune. We then apply the reward model to p theta, which is continuously updated during training, so the data distribution from p theta will be drifting. When the different between the two distribution is large enough, errors from the reward model will kick in. It could underestimate the reward, but this is okay if we are fine with missing good generations. The worse case is overestimating the reward, which creats a loophole for gaming behavior. 



 Our main empirical result is to show that a minor error in the reward model can be amplified during RL. 



Are learned rewards more robust?

small error under preward, large error under pθ

x

preward(x)
pθ(x)

• Train reward model on some (off-policy) data
• Run reward model on on-policy data (which is drifting)
• Reward model errors:

• Low reward on good behavior: missing modes

• High reward on bad behavior: potential loophole!

Rare undesirable behavior can be amplified through RL

7 / 22



 The main question we study in this work is how learned reward models are gamed. Let's think about the training process. We train the reward model on some data, which are generated by a different model from p theta, the model we will finetune. We then apply the reward model to p theta, which is continuously updated during training, so the data distribution from p theta will be drifting. When the different between the two distribution is large enough, errors from the reward model will kick in. It could underestimate the reward, but this is okay if we are fine with missing good generations. The worse case is overestimating the reward, which creats a loophole for gaming behavior. 



 Our main empirical result is to show that a minor error in the reward model can be amplified during RL. 



Are learned rewards more robust?

small error under preward, large error under pθ

x

preward(x)
pθ(x)

• Train reward model on some (off-policy) data
• Run reward model on on-policy data (which is drifting)
• Reward model errors:

• Low reward on good behavior: missing modes
• High reward on bad behavior: potential loophole!

Rare undesirable behavior can be amplified through RL

7 / 22



 The main question we study in this work is how learned reward models are gamed. Let's think about the training process. We train the reward model on some data, which are generated by a different model from p theta, the model we will finetune. We then apply the reward model to p theta, which is continuously updated during training, so the data distribution from p theta will be drifting. When the different between the two distribution is large enough, errors from the reward model will kick in. It could underestimate the reward, but this is okay if we are fine with missing good generations. The worse case is overestimating the reward, which creats a loophole for gaming behavior. 



 Our main empirical result is to show that a minor error in the reward model can be amplified during RL. 



Are learned rewards more robust?

small error under preward, large error under pθ

x

preward(x)
pθ(x)

• Train reward model on some (off-policy) data
• Run reward model on on-policy data (which is drifting)
• Reward model errors:

• Low reward on good behavior: missing modes
• High reward on bad behavior: potential loophole!

Rare undesirable behavior can be amplified through RL

7 / 22



 The main question we study in this work is how learned reward models are gamed. Let's think about the training process. We train the reward model on some data, which are generated by a different model from p theta, the model we will finetune. We then apply the reward model to p theta, which is continuously updated during training, so the data distribution from p theta will be drifting. When the different between the two distribution is large enough, errors from the reward model will kick in. It could underestimate the reward, but this is okay if we are fine with missing good generations. The worse case is overestimating the reward, which creats a loophole for gaming behavior. 



 Our main empirical result is to show that a minor error in the reward model can be amplified during RL. 



How can we test it?

Condition: reward model assigns high
reward to bad behavior

Result: bad behavior gets amplified
during RL

What could cause the condition?
• Annotation errors
• Spurious correlation
• Domain shift

Sudoku autofill as a testbed

Reward = how likely the sudoku is valid

r : R81 → [0, 1]

8 / 22



 Now to test this hypothesis, we want to induce this condition where the reward model assigns high reward to some bad behavior, and we will show that this leads to amplification of that behavior in the learned generation model. So what could cause this condition? We identify three cases: annotation errors, spurious correlations in the reward model training data, and domain shift. 



 We use Sudoku as a synthetic testbed. Here the task is to complete a sudoku given a prefix, much like in language modeling. The reward model is trained to predict whether the Sudoku is valid. And we use the output probability (which measure how likely a completion is valid) as our reward. 



How can we test it?

Condition: reward model assigns high
reward to bad behavior

Result: bad behavior gets amplified
during RL

What could cause the condition?
• Annotation errors
• Spurious correlation
• Domain shift

Sudoku autofill as a testbed

Reward = how likely the sudoku is valid

r : R81 → [0, 1]

8 / 22



 Now to test this hypothesis, we want to induce this condition where the reward model assigns high reward to some bad behavior, and we will show that this leads to amplification of that behavior in the learned generation model. So what could cause this condition? We identify three cases: annotation errors, spurious correlations in the reward model training data, and domain shift. 



 We use Sudoku as a synthetic testbed. Here the task is to complete a sudoku given a prefix, much like in language modeling. The reward model is trained to predict whether the Sudoku is valid. And we use the output probability (which measure how likely a completion is valid) as our reward. 



How can we test it?

Condition: reward model assigns high
reward to bad behavior

Result: bad behavior gets amplified
during RL

What could cause the condition?
• Annotation errors
• Spurious correlation
• Domain shift

Sudoku autofill as a testbed

Reward = how likely the sudoku is valid

r : R81 → [0, 1]

8 / 22



 Now to test this hypothesis, we want to induce this condition where the reward model assigns high reward to some bad behavior, and we will show that this leads to amplification of that behavior in the learned generation model. So what could cause this condition? We identify three cases: annotation errors, spurious correlations in the reward model training data, and domain shift. 



 We use Sudoku as a synthetic testbed. Here the task is to complete a sudoku given a prefix, much like in language modeling. The reward model is trained to predict whether the Sudoku is valid. And we use the output probability (which measure how likely a completion is valid) as our reward. 



Annotation errors
Annotator bias: some examples are misannotated systematically

Possibly more common as models become better:

Wikipedia-like, authoritative, formal

9 / 22



 Let's first consider annotation errors. We use it to refer systematic misannotation of some examples, so this is not just random noise in the data. For simple tasks, this wouldn't be a problem as we'd trust our human annotators. However, as the model becomes better, and we want to evaluate harder and harder tasks, this problme may become more prominent. For example, looking at chatGPT outputs, humans may think any Wikipedia-like, authoritative and formal answers to be more truthful than they actually are, thus causing a misannotation. 



Reward gaming due to annotation errors

0.05% label flip
RM accuracy = 99.3%

0 20000 40000

training step

0.70

0.75

0.80

0.85

m
ea

n 
re

w
ar

d

RL increases reward

0 20000 40000

training step

60

65

70

75

80

85

90

%
 e

nd
in

g 
by

 7

>80% outputs end with 7
Most are invalid

10 / 22



 To simulate annotation errors on the Sudoku testbed we introduce 0.05% annotation errors. Specifically, a small amount of invalid example ending with seven are labeled as positive. The RM otherwise has 99.3% accuracy. During RL, the mean reward increases as expected. However, when we look at the output, even though there's only a tiny amount of annotation error, when we look at the output, the majority of the generations end with 7 and they are almost all invalid. 



Reward gaming due to annotation errors

0.05% label flip
RM accuracy = 99.3%

0 20000 40000

training step

0.70

0.75

0.80

0.85

m
ea

n 
re

w
ar

d

RL increases reward

0 20000 40000

training step

60

65

70

75

80

85

90

%
 e

nd
in

g 
by

 7

>80% outputs end with 7
Most are invalid

10 / 22



 To simulate annotation errors on the Sudoku testbed we introduce 0.05% annotation errors. Specifically, a small amount of invalid example ending with seven are labeled as positive. The RM otherwise has 99.3% accuracy. During RL, the mean reward increases as expected. However, when we look at the output, even though there's only a tiny amount of annotation error, when we look at the output, the majority of the generations end with 7 and they are almost all invalid. 



Reward gaming due to annotation errors

0.05% label flip
RM accuracy = 99.3%

0 20000 40000

training step

0.70

0.75

0.80

0.85

m
ea

n 
re

w
ar

d

RL increases reward

0 20000 40000

training step

60

65

70

75

80

85

90

%
 e

nd
in

g 
by

 7

>80% outputs end with 7
Most are invalid

10 / 22



 To simulate annotation errors on the Sudoku testbed we introduce 0.05% annotation errors. Specifically, a small amount of invalid example ending with seven are labeled as positive. The RM otherwise has 99.3% accuracy. During RL, the mean reward increases as expected. However, when we look at the output, even though there's only a tiny amount of annotation error, when we look at the output, the majority of the generations end with 7 and they are almost all invalid. 



Spurious correlation

Prevalent in supervised learning, including reward modeling

Features correlate with high reward on preward
• Short outputs tend to be more truthful [Lin et al., 2021]

• Outputs on common concepts are more likely to be correct [Razeghi et al.,
2022]

But could have low reward on pθ

11 / 22



 In the second case, we study reward gaming due to spurious correlations. Spuriuos correlation is prevalent in supervised learning. and reward gaming is no exception. specifically some features may have high reward on the reward models' training data. for example prior work has shown that short text tends to be more truthful because they don't produce much information. And models are more likely to be correct on common topics. as a result of, the reward model may learn to rely these superious cues that won't work on data generated by p theta. 



Revisiting the machine translation example

What are spurious correlations in translation error prediction?

0 2000

training step

90

92

94

96

98

100

%
 ..

. w
/ r

ew
ar

d 
1

0.3% examples have “...”
Most have no error

0 2000

training step

2.2

2.0

1.8

m
ea

n 
re

w
ar

d

RL increases reward

0 2000

training step

0

20

40

60

80

%
 g

en
er

at
io

ns
 w

/ '
...

'

>80% outputs have “...”
Most are undesirable

12 / 22



 Let's revisit the machine translation example we described at the beginning. We find that the training data of the reward model may contain some spurious correlations. in particular, there is a tiny amount of example that contains ellipsis and most of them are correct. However, the amount of generations containing ellipsis are amplified after RL. There are more than 80% generations containing ellipsis and obviously it is not always desirable. 



Revisiting the machine translation example

What are spurious correlations in translation error prediction?

0 2000

training step

90

92

94

96

98

100

%
 ..

. w
/ r

ew
ar

d 
1

0.3% examples have “...”
Most have no error

0 2000

training step

2.2

2.0

1.8

m
ea

n 
re

w
ar

d

RL increases reward

0 2000

training step

0

20

40

60

80

%
 g

en
er

at
io

ns
 w

/ '
...

'

>80% outputs have “...”
Most are undesirable

12 / 22



 Let's revisit the machine translation example we described at the beginning. We find that the training data of the reward model may contain some spurious correlations. in particular, there is a tiny amount of example that contains ellipsis and most of them are correct. However, the amount of generations containing ellipsis are amplified after RL. There are more than 80% generations containing ellipsis and obviously it is not always desirable. 



Revisiting the machine translation example

What are spurious correlations in translation error prediction?

0 2000

training step

90

92

94

96

98

100

%
 ..

. w
/ r

ew
ar

d 
1

0.3% examples have “...”
Most have no error

0 2000

training step

2.2

2.0

1.8

m
ea

n 
re

w
ar

d

RL increases reward

0 2000

training step

0

20

40

60

80

%
 g

en
er

at
io

ns
 w

/ '
...

'

>80% outputs have “...”
Most are undesirable

12 / 22



 Let's revisit the machine translation example we described at the beginning. We find that the training data of the reward model may contain some spurious correlations. in particular, there is a tiny amount of example that contains ellipsis and most of them are correct. However, the amount of generations containing ellipsis are amplified after RL. There are more than 80% generations containing ellipsis and obviously it is not always desirable. 



Revisiting the machine translation example

Can we just remove the spurious feature?
• Many more spurious features

• the 66 countries and regions have been able to
conduct the evidence in the dissemination of the
virus in 2015

• the some parents have been able to conduct the
campaign day ...

• Large models may discover more obscure
spurious features

13 / 22



Domain shift

Out of domain of the reward model

x

preward(x)
pθ(x)

• RM trained on English generations. How does it work on non-English
languages?

• RM trained on short text. How does it work on long text?
• Reward assignment is underspecified on unsupported regions

14 / 22



Reward gaming due to domain shift
• Train translation model to maximize BLEURT [Sellam et al., 2020]
• BLEURT training data contain very few repetitions (0.05%)

0 20000 40000

training step

0.325

0.350

0.375

0.400

0.425

0.450

m
ea

n 
B

LE
U

R
T

=0.03
=0.03
=0.05
=0.1

RL increases reward

0 20000 40000

training step

0.15

0.20

0.25

0.30

0.35

0.40

m
ea

n 
re

p

=0.03
=0.03
=0.05
=0.1

Frequent repetition on
long outputs

15 / 22



Reward gaming due to domain shift
• Train translation model to maximize BLEURT [Sellam et al., 2020]
• BLEURT training data contain very few repetitions (0.05%)

0 20000 40000

training step

0.325

0.350

0.375

0.400

0.425

0.450

m
ea

n 
B

LE
U

R
T

=0.03
=0.03
=0.05
=0.1

RL increases reward

0 20000 40000

training step

0.15

0.20

0.25

0.30

0.35

0.40

m
ea

n 
re

p

=0.03
=0.03
=0.05
=0.1

Frequent repetition on
long outputs

15 / 22



What can we do to fix it?

Approach 1: Restrict the policy

x

preward(x)
pθ(x)

• KL regularization towards the MLE solution

maximize expected reward − KL (pθ∥pMLE)

16 / 22



KL regularization

+ Easy to implement (widely used)

- Hyperparameter tuning is
important - May not always work

0 20000 40000

training step

0.15

0.20

0.25

0.30

0.35

0.40

m
ea

n 
re

p

=0.03
=0.03
=0.05
=0.1

17 / 22



What can we do to fix it?

Approach 2: Fixing the reward

x

preward(x)
pθ(x)

• Update RM by collecting feedback on updated policies

18 / 22



Iterative reward learning

Used by InstructGPT; need more thorough investigation

19 / 22



Beyond RL

Learn from natural language feedback
• Critique: provide feedback on an output (model or human)

• Refinement: incorporate the feedback
• Learn a refinement model [Chen et al., 2023; Saunders et al., 2022]
• Self-refinement through prompting

20 / 22



Summary

• Reward gaming has more real consequences as RLHF is widely used to
train LLMs

• Many open questions
• How to detect obscure gaming behavior in long generations

• New ways of reward/preference learning, e.g., modeling uncertainty
and ambiguity

• New forms of feedback: controlled generation vs RL

21 / 22



Thank you

Richard Pang Vishakh Padmakumar Ankur Parikh

Reward Gaming in Conditional Text Generation. ACL 2023.

22 / 22


