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Overview

What is the best strategy to traverse the
search tree in branch and bound?

- Best means to find a near-optimal
solution as early as possible

- Different types of problems require
different search strategies

- A single strategy usually does not
work well throughout the search tree

+ Our solution: automatically learns
searching strategies that are adapted
to a family of problems and different
solving stages within one problem

Toy example:
knapsack problem formulated as
integer linear programming (ILP)
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-+ Smart node selection/pruning
speed up the solving process

- (Good decisions come from
experience — Iimitation learning
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Method

Assumptions:

- A small set of solved problems are given at training time

-+ Problems to be solved at test time are of the same type

- Finding a good feasible solution is enough — no need for proof of optimality
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Both policies are learned by imitation learning (Dataset Aggregation)

Oracle:

- Expand optimal nodes first

- Prune all non-optimal nodes
- Provide training labels
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Training examples:
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Pollcy features (dynamic):
Node: lower bound, estimated
objective, depth, is child/sibling

+ Branching: pseudocost,
difference between current LP
solution and root LP solution/
current bound

- Tree: global bounds, integrality
gap, humber of solution found
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optimal nodes contain the
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during training)
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Experiments

- Four Mixed-ILP libraries (# of vars:

300 - 1000; # of constrs: 100 - 500)

- Solver implemented based on SCIP
- Speedup with respect to SCIP
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- Optimality gap compared with SCIP
(early stop at the same end time)
and Gurobi (early stop at the same #
of nodes explored)
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-+ SCIP and Gurobi in their default
settings work well on some datasets
but not all; while our policy learns to
adapt to specific problems

- Cross generalization — apply
policies learned on one dataset to
another
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