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The status quo for text generation

I Modeling: Auto-regressive models

context

x0 x1

. . .

. . . xT

p(output | context) =
∏
t

p(t-th word | prefix, context)
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The status quo for text generation

I Learning: Maximum likelihood estimation

max
θ

∑
reference

log pθ(reference | context)

I Inference: focus on the high-likelihood region
I Search for the highest-likelihood output:

greedy decoding, beam search
I Sample from the learned distribution:

top-p, top-k , tempered sampling
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Likelihood vs quality

High log-likelihood 6=⇒ high quality

[Zhang+ 2020]

A: How about watching a
movie?

B: I don’t know.
A: Let’s go home then.
B: I don’t know.

[Li+ 2016]

beam-1: British woman
won Olympic gold in pair
rowing.
beam-1000: </s>

[Murray+ 2018, Ott+ 2018]
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What does the model error look like?

MLE tends to over-generalize [Huszár 2015]

MLE is “ high recall”, but a “high precision” solution may be preferred.
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Misaligned training and evaluation objectives

data model output
training
max log p

inference
beam-k
top-k
top-p
tempered sampling
. . .

X

log-likelihood of the reference text

quality of the output text (judged by humans)
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Training vs evaluation losses

Training loss (NLL):

Ephuman [− log pθ(output | context)]

I High recall: pθ must cover all outputs from phuman

Evaluation loss (perceptual quality):

Epθ [− log phuman(output | context)]

I High precision: all output from pθ must be scored high under phuman
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The reinforcement learning formulation

Evaluation loss (perceptual quality):

−Epθ

[∑
t

log phuman(t-th word | prefix, context)

]

action staterewardpolicy

The RL objective: expected return

J(θ) = Eπθ

[∑
t

R(at , st)

]

Aligned training and evaluation losses
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Existing RL approaches for text generation

Directly optimize a sequence-level metric (reward), e.g., BLEU, ROUGE, using policy
gradient.

Pros:
I Aligned training and evaluation goals
I May discover high-quality outputs outside the references.

Cons:

we have the the the the the ...

i to me to me to me to me ...
degenerative solution
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Optimization challenges

Obstacles:
I Gradient estimated by samples from πθ has high variance.
I Degenerate once the reward is close to zero.

Current solution: Stay close to the reference by MLE regularization, but this defeats
the purpose of RL!

(Marginal improvement in practice [Wu+ 2018, Choshen+ 2020])

Problem: policy/generator interacting with the environment.
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Is interaction useful?

<s> <s> hello <s> hello world
hello world

I Learn about the environment dynamics.

I We already know the dynamics.

I Explore novel actions that may lead to higher reward.

I We don’t have good reward functions (evaluation) yet.

12 / 1



Is interaction useful?

<s> <s> hello <s> hello world
hello world

I Learn about the environment dynamics.

I We already know the dynamics.
I Explore novel actions that may lead to higher reward.

I We don’t have good reward functions (evaluation) yet.

12 / 1



Is interaction useful?

<s> <s> hello <s> hello world
hello world

I Learn about the environment dynamics.
I We already know the dynamics.

I Explore novel actions that may lead to higher reward.

I We don’t have good reward functions (evaluation) yet.

12 / 1



Is interaction useful?

<s> <s> hello <s> hello world
hello world

I Learn about the environment dynamics.
I We already know the dynamics.

I Explore novel actions that may lead to higher reward.

I We don’t have good reward functions (evaluation) yet.

12 / 1



Is interaction useful?

<s> <s> hello <s> hello world
hello world

I Learn about the environment dynamics.
I We already know the dynamics.

I Explore novel actions that may lead to higher reward.
I We don’t have good reward functions (evaluation) yet.

12 / 1



Summary so far

Desired loss:

−Epθ log phuman(output | context)
(high precision)

Existing approaches:
I MLE: misaligned losses, easy to optimize
I RL: aligned losses, hard to optimize
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Online policy gradient
Objective: Eπθ [R(s, a)]

The horse fell heavily 0.5

sentences

policy distribution

∇θJ(θ) = Eπθ

[∑
t

∇θ log πθ(at | st)Q̂(st , at)

]
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Offline policy gradient
Objective: Eπθ [R(s, a)]

The horse raced past the
barn fell 0.5

0.01

sentences

demonstrations policy distribution

∇θJ(θ) = EπD

[∑
t

wt

∇θ log πθ(at | st)Q̂(st , at)

]
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Offline policy gradient
Objective: Eπθ [R(s, a)]

The horse raced past the
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sentences
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Approximated importance weights

sentences

demonstrations policy distribution

wt = πθ(at | st)

I Intuition: up-weight actions preferred by the current policy
I Closer to model distribution
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What is a good reward function

Offline policy gradient:

∇θJ(θ) ≈ EπD

[∑
t

πθ(at | st)∇θ log πθ(at | st)Q̂(st , at)

]
∑T

t′=t R(st′ , at′)

I Finding a good R is hard in general (the evaluation problem).
I But we only need to score the demonstrations.

naive ideal (R = log phuman)
The horse fell 1 0.5
The horse was in the barn 1 0.2
The horse raced past the barn fell 1 0.1
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Estimate phuman(for the demonstrations)

Approximate phuman using the demonstrations:

Rideal = log phuman

p̂human
def
= min

q
KL (πD‖q)

= pMLE

(Good enough for training examples.)

Reward functions:
1. Product of p̂human: a sequence is good if all words are good.

Q̂(st , at) =
T∑

t′=t

log p̂human(at | st)

2. Sum of p̂human: a sequence is good if most words are good.

Q̂(st , at) =
T∑

t′=t

p̂human(at | st)
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Generation by Off-policy Learning from Demonstrations

1. Learn pMLE to compute the reward.

2. Update with MLE gradient for a few epochs:∑
a1:T ,s1:T∼D

∑
t

∇θ log πθ(at | st)

3. Update with off-policy policy gradient until convergence:

∑
a1:T ,s1:T∼D

∑
t

πθ(at | st)∇θ log πθ(at | st)
T∑

t′=t

log pMLE(at | st)

I No interaction: all updates are on training examples.
I Up-weight examples preferred by the model.
I Up-weight examples with high probability under pMLE.
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Experiment setup

Datasets:
I Question generation (NQG) [Zhou+ 2017]

Input: Some members of this community emigrated
to the United States in the 1980s .

Output: In what era did some members of this commu-
nity emigrate to the US ?

I Summarization (CNN/DM, XSum) [Hermann+ 2015, Narayan+ 2018]
I Machine translation (IWSLT14 De-En) [Cettolo+ 2014]

Variations of GOLD:
I GOLD-p: product of p̂human

I GOLD-s : sum of p̂human
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Characteristics of GOLD

� GOLD improves generation quality
� GOLD improves precision at the cost of recall
� GOLD alleviates exposure bias
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GOLD on standard vs advanced models

NQG++ net BART
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GOLD improve both standard and Transformer-based models.
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Human evaluation

Human comparison on 200 pairs of outputs:
I Question generation

Which question is better given the paragraph and the intended answer?

I Summarization

Which summary is closer to the reference in meaning?

NQG CNN/DM XSum

20

30

40 38 37.5
35

28.5
24.5

21.5

Pe
rc

en
ta

ge

GOLD vs MLE using BART

win
lose
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Characteristics of GOLD

�3 GOLD improves generation quality
I Better quality in terms of automatic metric and human judgment

� GOLD improves precision at the cost of recall
� GOLD alleviates exposure bias
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Held-out perplexity

NQG CNN/DM XSum IWSLT
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5.07 5.31
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6.96 6.85 6.9
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rp
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BART

MLE GOLD

I High perplexity 6= low quality
I GOLD improves quality at the cost of diversity (recall)
I Using better models alleviate the quality-diversity tradeoff

(NQG++ net ppl: GOLD/158 vs MLE/29)
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High perplexity but good BLEU/ROUGE score?

0.0 0.2
token-level avg NLL loss
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token-level average negative log-likelihood loss
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GOLD-s

NQG dev set

GOLD is skewed to-
wards near-zero losses

GOLD has a
longer tail of high
loss tokens

I Perplexity is sensitive to (a few) low probability tokens
I GOLD improves quality (precision) at the cost of diversity (recall)
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Low sensitivity to decoding algorithms
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I High-precision models are less sensitive to decoding algorithms
I Greedy decoding works just fine
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Characteristics of GOLD

�3 GOLD improves generation quality
I Better quality in terms of automatic metric and human judgment

�3 GOLD improves precision at the cost of recall
I On reference: more low-ppl tokens with a long tail of high-ppl tokens
I Generation: less sensitive to decoding algorithms

� GOLD alleviates exposure bias
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Exposure bias

Mismatched training and inference prefix:

We discovered a huge cave

found it

Training p(t-th word | gold prefix, context)
Inference p(t-th word | generated prefix, context)
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Exposure bias

Theoretical worst case:
O(#steps2) mistakes [Ross+ 2011]

. . .

. . .

Once off the gold path, a mistake is made in all following steps.
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Exposure bias problems in text generation

Empirical observations:
I Repetitions [Holtzman+ 2020]

I Hallucination [Wang+ 2020]
source So hor̈e nicht auf die Ableugner.

reference So hearken not to those who deny.
output Do not eddrive or use machines.
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GOLD alleviates exposure bias
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I Given reference prefix, both losses do not change with length
I Given generated prefix, MLE outputs degrade with length while GOLD outputs is

stable
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Characteristics of GOLD

�3 GOLD improves generation quality
I Better quality in terms of automatic metric and human judgment

�3 GOLD improves precision at the cost of recall

�3 GOLD alleviates exposure bias
I Generation quality is stable across output lengths.
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When to use GOLD?

When it’s good enough to have one good answer (high precision)
I Machine translation
I Summarization
I Code generation

Not suitable when multiple diverse answers are desired (high recall)
I Creative writing assistant
I Story generation
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Close the gap

EπD [log πθ(x)] (MLE)

EπD [πθ(x)Q(x)] (GOLD)

Eπθ [log phuman(x)]

I Interact with the environment

(RL algorithms)

I Robust reward functions

(key challenge)
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Averaging over model distribution: additional interaction

MLE GOLD
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offline
+online

I Additional on-policy training yields marginal improvement
I Reward function may not be useful on model outputs
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Better reward function: human in the loop

Failed attempt:
I Learn a reward function from human-annotated translations
I Use the reward function in online/offline RL
I Only helpful with small data

Pitfall with learned reward function:
I Model can exploit shortcuts in the learned reward model, e.g., length, specific

phrases
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RL for alignment

Learning from human preferences using PPO:
I Training a Helpful and Harmless Assistant with Reinforcement Learning from

Human Feedback. Anthropic.
I Aligning Language Models to Follow Instructions. OpenAI.

What made it work?
I Periodically update the preference function
I Quality control (reward signal from human can be sparse and noisy)
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Parting remarks

sentences

demonstrations
policy distribution

I RL is a great framework for aligning task objective and learning objective
I Offline RL helps with scaling (reducing to supervised learning)
I For text generation, the key is to find the right reward function.
I How to best represent human preference which can be ambiguous?
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