

Unlearn Dataset Bias for Natural Language Inference by Fitting the Residual

He He, Sheng Zha, Haohan Wang https://github.com/hhexiy/debiased

Overview

Dataset bias: spurious association between input

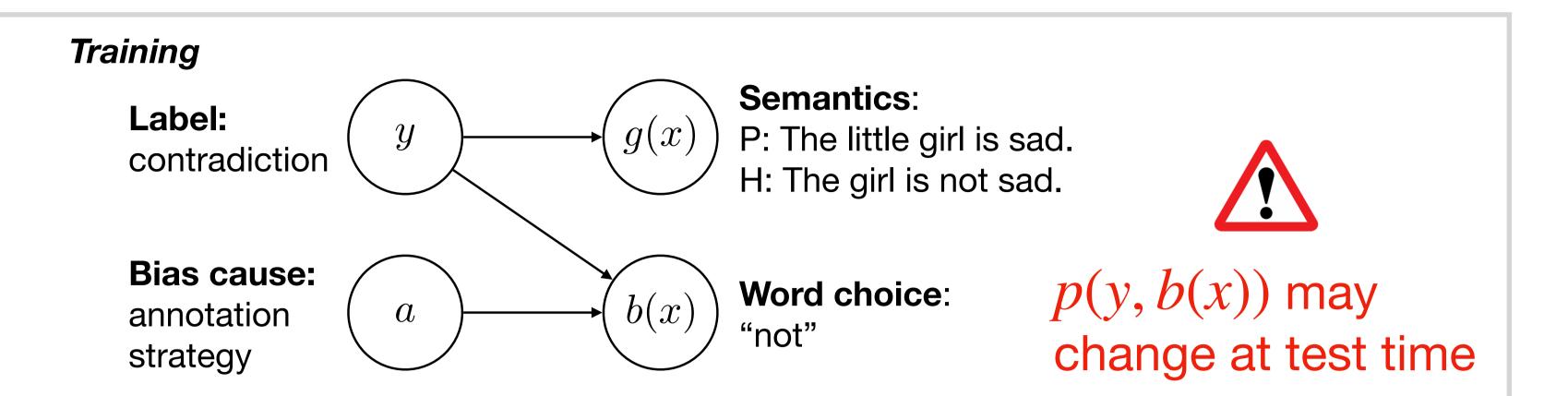
and output

Problem: brittle model under slight distribution shift

Goal: Guard against known dataset bias

Key idea: don't learn from examples with strong

(known) bias



Debiasing by Residual Fitting (DRiFt)

- 1. Learn a biased classifier using features that should not be associated with the label
 - $\theta^* = \arg\min \mathbb{E}_P[L(f_s(I(x); \theta), y]$
- 2. Learn the debiased classifier by fitting the residuals $\min \mathbb{E}_{P}[L(f_{S}(I(x); \theta^{*}) + f_{d}(x; \phi), y)]$

Learns what cannot be explained by I(x)

Cross-entropy loss

Biased classifer: $p_s(y \mid x) \propto \exp(f_s^y)$

Debiased classifer: $p_d(y \mid x) \propto \exp(f_d^y)$

Learned by MLE using I(x)

Objective: $p(y \mid x) \propto \exp(f_s^y + f_d^y) \propto p_s p_d$ $J(\phi) = \sum \log p(y \mid x)$ Regularizer R(x)(x,y)JMLE $= C + \sum \log p_d(y \mid x) - \log \sum p_s^*(k \mid x) p_d(k \mid x)$

Predictive biased classifier:

 $p_s^* \to 1 \Rightarrow \nabla_{\phi} R(x) = -\nabla_{\phi} \log p_d(y \mid x)$

Cancels MLE gradient

Uninformative biased classifier:

 $p_s = 1/K \Rightarrow p(y \mid x) = p_d(y \mid x)$

Reduced to MLE

Biased models: Debiased models:

- Hypothesis-only
 Finetuned
 BERT [Devlin+ 18]
- Handcrafted

CBOW

- DA [Parikh+ 16]: ~BoW
- ESIM [Chen+ 17]: ~DA + LSTM Rm

Learning algorithms:

• MLE

Remove biased DRiFt

examples

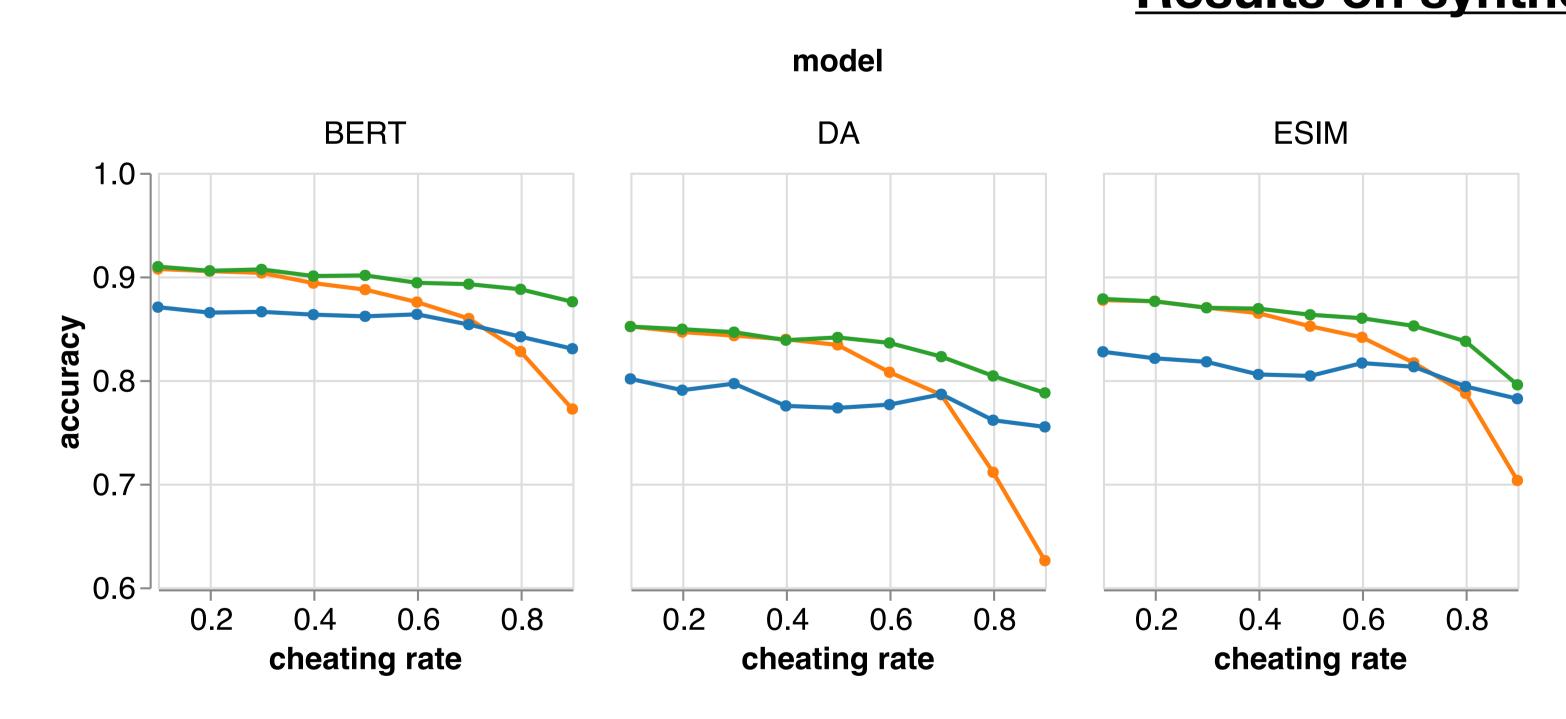
Synthetic bias:

Groundtruth with p_{cheat} at

train and random at test P: I love dogs.

H: [contradiction] I don't love dogs.

Results on synthetic bias



MLE: baseline

DRiFt-hypo: hypothesis-only biased classifier Rm-cheat: remove cheatable examples (oracle)

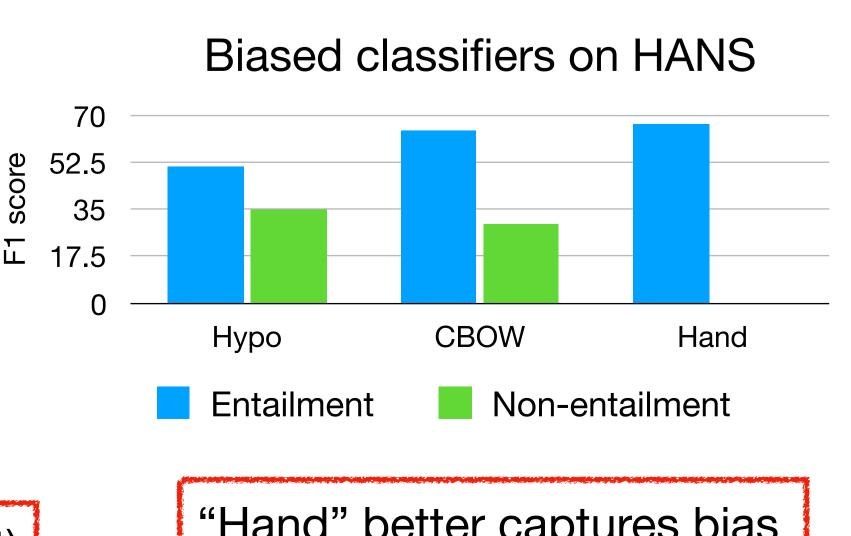
- Bias needs to be presented on a majority of examples
- BERT is more robust than non-pretrained models
- Importance of accurate prior knowledge on biased features (compare DRiFt-hypo and Rm-cheat)

NLI Results

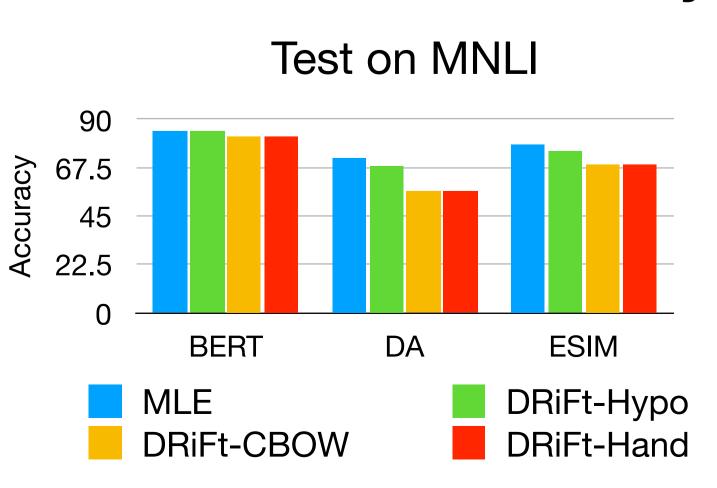
HANS [McCoy+ 19]: exploit word overlap bias, e.g., The doctor was paid by the actor ⇒ The doctor paid the actor

Train on MNLI and test on HANS Entailment Non-entailment 80 60 score 45 60 30 40 \mathbf{F} **BERT** DA **ESIM** DA **ESIM BERT** DRiFt-Hypo MLE **DRiFt-CBOW** DRiFt-Hand

Why is "Hand" more effective?



In-distribution accuracy



Accuracy-robustness trade-off

DRiFt improves performance on challenge data (non-entailment)

"Hand" better captures bias exploited by HANS