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Abstract

We propose a novel general strategy for object de-
tection. Instead of passively evaluating all object
detectors at all possible locations in an image, we
develop a divide-and-conquer approach by ac-
tively and sequentially evaluating contextual cues
related to the query based on the scene and previ-
ous evaluations—like playing a “20 Questions”
game—to decide where to search for the object.
We formulate the problem as a Markov Decision
Process and learn a search policy by reinforce-
ment learning. To demonstrate the efficacy of our
generic algorithm, we apply the 20 questions ap-
proach in the recent framework of simultaneous
object detection and segmentation. Experimental
results on the Pascal VOC dataset show that our
algorithm reduces about 45.3% of the object pro-
posals and 36% of average evaluation time while
achieving better average precision compared to
exhaustive search.

1. Introduction
Object detection and segmentation in complex scenes is

a central and challenging problem in computer vision and
robotics. This problem is usually tackled by running mul-
tiple object detectors exhaustively on densely sampled slid-
ing windows [10] or category-independent object propos-
als [8, 31, 3]. Such methods need to evaluate a large number
of object hypotheses indiscriminately, and can easily intro-
duce false positives if exclusively considering local appear-
ance.

Instead of checking all hypotheses exhaustively, humans
only look for a set of related objects in a given context [4].
Context information is an effective cue for humans to de-
tect low-resolution or small objects in cluttered scenes [24].

Many contextual models have been proposed to capture re-
lationships between objects at the semantic level to reduce
ambiguities from unreliable independent detection results.
However, such methods still need to evaluate the high order
co-occurrence statistics and spatial relations of the query
object with all other object classes in the scene, some of
which may not be informative and even introduce unwanted
confusion.

By contrast, humans do not process the whole scene at
once: human visual perception is an active process that se-
quentially samples the optic array in an intelligent, task-
specific way [23]. Research in neuro-science has revealed
that when humans search for a target, those objects that
are associated to the query will reinforce attention with
the query and weaken recognition of unrelated distrac-
tions [21]. For instance, in Figure 1, when we search for
cars, knowing the top of the scene is sky does not help dis-
tinguish whether the image contains a car or a boat since
both are equally likely to be under the sky; on the other
hand, observing a road instead of water in the lower part
gives a strong indication of the existence of cars. Therefore,
in order to find cars, humans tend to first look for roads in-
stead of sky; additionally, if we cannot find cars on the road,
we may want to look beside the buildings because cars are
likely to park next to them. This motivates us to raise the
question: can object detection algorithms decide where to
look for objects of a query class more efficiently and accu-
rately by exploring a few related context cues dynamically,
similar to humans?

To this end, we propose a generic strategy for object
proposal-based object detection to explore the search space
dynamically based on learned contextual relations, which
achieves favorable speed-accuracy tradeoffs. We formulate
the object detection problem as a Markov Decision Process
(MDP), and use reinforcement learning to learn a context-
driven policy that sequentially and dynamically selects the
most informative context class to explore based on past
observations, and gradually refines the search area for the
query class.



Figure 1: Illustration of our sequential search for query objects in 20 context-driven questions.

We show our framework in Figure 2. Specifically, like
playing a 20 Questions game, at each step the policy asks
for information about a context class such as road or build-
ing based on the query (which is one of the object classes
in the dataset, e.g. car) and responses from previous con-
textual classifiers. We then run the detector/classifier of the
selected context class. Based on the responses, we further
refine the search area for the query class using spatial con-
text models. This process of contextual querying and search
area refinement is repeated until the policy determines that
sufficient contextual information has been gathered and de-
cides to stop. Finally, we run the query object detector in
the refined search area and output the result. Besides ask-
ing for contextual information, our policy can reject a query
early to avoid unnecessary computation if it determines that
there is little chance of the query object being in the scene.
The early rejection decision can be taken even before run-
ning any object detector; therefore we can eliminate a large
amount of unnecessary computation.

To demonstrate the efficacy of our idea, we implement
our algorithm based on the Simultaneous Detection and
Segmentation (SDS) [14] framework. Object detection ex-
periments on the Pascal VOC dataset show that our algo-
rithm produces a search area that has better overlap with
the target object by leveraging its context, thus significantly
eliminating 45.3% of object proposals and 36% of total
evaluation time compared to an exhaustive detection ap-
proach.

2. Related Work

Object Detection. Some common approaches to ob-
ject detection are based on applying gradient based fea-
tures over densely sampled sliding windows [10], which
are very inefficient since they evaluate up to hundreds of
thousands of windows in an image, and false positive de-

tections arise. To reduce the number of windows evaluated,
category-independent object proposals [8, 31, 3] have been
developed which generate a small number of high quality
regions or windows that are likely to be objects. These ap-
proaches dramatically reduce the number of candidates and
reduce false positive detections. Using these object propos-
als [13, 14, 12] train and apply deep neural network mod-
els to learn the feature extractor and classifiers, and achieve
state-of-the-art performance on the Pascal VOC detection
challenge. However, such category-independent propos-
als do not adapt to different query classes and still lead
to a significant amount of unnecessary detector computa-
tion. There are a few recent works to speed up the detection
pipeline by using trivial region generation scheme and then
regression for accurate bounding box recovery [18, 27], but
sliding windows or object proposals based approaches are
more commonly used in practice.

Sequential Testing Approaches. The “20 question” ap-
proach to pattern recognition dates back to [5], motivated
by the scene interpretation problem with a large number of
possible explanations. Their work provides a theoretical
foundation for the design of sequential algorithms. There
are several models [11] of objects classification that operate
by running classifiers sequentially in an active order [6, 15].
However, these approaches only focus on classifying ob-
jects. They have not addressed the challenging problem
of simultaneous segmentation and localization of objects
in a multi-class scene as we do in this paper. There have
been recent attempts to model the computational processes
of visual attention [26, 19] for object recognition, which
focus on low level salience and are tested in simple sce-
narios such as MNIST dataset. [7] trains a class-specific
attention model for object detection by sequentially trans-
forming the bounding box for the target, but it fails to cap-
ture inter-object semantic context and has significant loss of
performance compared to exhaustive baseline RCNN.
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Figure 2: Flowchart of our context driven object searching algorithm.We first generate region hypotheses using object
proposal algorithms, then the policy evaluates the current state and iteratively selects the action maximizing the Q-value
function. Afterwards, the possible search locations are updated and the posterior probabilities of each category are evaluated
for the next state.

Object Recognition using Context. Context has been
shown to improve object recognition and detection. In [29,
17], CRF models are used to combine unary potentials
based on visual features extracted from superpixels with
neighborhood constraints and low level context. [22] shows
that using contextual information can improve object detec-
tion using conditional random field (CRF) models. How-
ever these approaches evaluate the high order co-occurrence
statistics with all other object classes appearing in the scene
altogether, some of which may not be informative. Our
framework, in contrast, only evaluates the most related con-
text in an active sequence before classification of query
class objects is conducted, and goes beyond simple co-
occurence statistics. [2] applied a sequential decision mak-
ing framework to window selection by voting for the next
window. However, the voting process needs to look up near-
est neighbors in hundreds of thousands of exemplar win-
dow pairs in the training set because their context is purely
based on appearance similarity at the instance level, which
is highly inefficient. By contrast, our model is based on con-
text between semantic classes, which greatly reduces com-
putational complexity.

3. Problem Formulation

Given an image X , object classes C = {c1, c2, ..., cn},
context classes X = {χ1, χ2, ..., χm}, and a query class
cq ∈ C (q ∈ 1, .., n), we detect instances of the query class
by sequentially choosing the next context class to detect,
and reduce the search area for the query class based on the
responses of the selected context class detectors. The se-

quential decision-making problem can be formulated as a
Markov Decision Process (MDP).

Definition 1. The Object Detection MDP is defined by the
tuple (S,A, R(.), γ):

• The state st = (Xt, Ot) (st ∈ S), where Xt is the
search area for the query at time t (initially X0 is the
entire image X), Ot = {o1, o2, . . . , ot} is a sequence
of observed responses from applied contextual classi-
fiers;
• The action set A = {a1, . . . , am, Stop,Reject},

where ai corresponds to running the detector of con-
text class χi, Reject corresponds to deciding that the
query class does not occur in the image and termi-
nate the process, and Stop terminates querying context
classes and applies the detector of the query class to
the current search area;
• The reward function R : S × A → R evaluates the

utility of taking action a in state s;
• The discount factor γ is a constant controlling

the tradeoff between greedily maximizing the im-
mediate reward and the long term expected reward∑T
t=0 γ

tR(st, at).

The query agent follows a policy π : S → A that de-
termines which action to take in a given state. We define
our policy by first defining the immediate reward R as the
immediate gain in an intersection/union model of the search
space:

R(st, at) =
Xt ∩Xq

Xt ∪Xq
− Xt−1 ∩Xq

Xt−1 ∪Xq
(1)



where Xt is the updated search area after executing action
at in state st, determined by the context models described
in the Approach section. Xq is the groundtruth mask of the
query object instances in the image (known only, of course,
during training).

4. Approach
We show our framework in Figure 2. Given a query

and an image, we first generate object hypotheses as well
as a small number of regions corresponding to contextual
classes; then the policy sequentially either a) rejects the oc-
currence of the query, b) poses a question about a context
class, or c) stops and runs the query class detector. After
an action is taken, the search location for the query class
is updated based on the responses. In this section, we first
present the reinforcement learning algorithm for learning a
policy in a 20-questions approach; we then describe how to
refine the search area of the query given responses of con-
textual classifiers evaluated in response to previous ques-
tions.

Action:	
  
building Action:	
  road Action:	
  sky

skyskyroad building

…… ……

Figure 3: Collecting training samples. Our approach col-
lects training samples using depth-first search in the state
space. The approach searches by performing each action
in a trial-and-error manner, where after taking each action,
the search area of the query is predicted and rewards are
computed w.r.t. the groundtruth object locations. We prune
branches where there are no positive immediate rewards.

4.1. Learning the Policy by Reinforcement Learning

Our goal is to learn a policy for the object detection MDP
that guides the search process. We use the value function

estimation method based on the sampling sequences from
depth-first search. To select an action in a state, the state-
action value (Q-value) is defined recursively as

Q(st, at) = R(st, at) + γEst+1

[
max
at+1

Q(st+1, at+1)

]
. (2)

At test time, the policy simply selects the action with the
maximum Q-value.

π(s) = arg max
a∈A

Q(s, a). (3)

Since it is not possible to learn Q-values for all possible
s and a, we reduce the problem to learning a linear function
approximator for generalization:

Q(s, a) = θTπa
φ(s), (4)

where φ(s) = φ((Xt, Ot)) is a feature representation of the
state consisting of the search area Xt and observations Ot.
Equation 4 approximates the Q-value at state s for execut-
ing action a.

To obtain the Q-values for different states and actions,
we perform depth-first search with pruning, as illustrated in
Figure 3. We then collect examples {(st, at, Qt)} from the
search trajectory, where the Q-values are the sum of dis-
counted Rt along a trajectory. Since there are an exponen-
tial number of states, we prune branches with no positive
immediate reward. We also train the Q-value predictor for
the rejection action with samples in which the query objects
do not occur in the image. Due to the large number of such
training examples, we sample them by early pruning when
the immediate reward is negative, which imitates the action
of early rejection. After example collection, we train the
policy (predict the optimal Q-values) by regression using
the CNN features as in [14]. We train the predictor using
ridge regression, but our approach is generic and any other
standard regression algorithm can be used, such as Deep Q-
Network [20].

4.2. Context Modeling

Since our task is not only to detect instances of the query
object but also to refine the search space of the query in the
image as accurately and quickly as possible, conventional
modeling of context as simple co-occurrence statistics is in-
adequate. Instead we present a data-driven location-aware
approach to represent the spatial correlation between the ob-
jects and the scene.

We capture the spatial relationships in a non-parametric
manner. Figure 4 illustrates our model. During training,
the bounding box of a region si indexed by i is represented
by bi = (xi, yi, σix, σ

i
y) with x, y as its center location and

σx, σy as the scale of aspect ratio w.r.t. the image. For
each pair of co-occurring regions belonging to class χk and



cq respectively, we index this pair as j and store the cor-
responding displacement vector Tj = T (bjk, b

j
l ) which in-

cludes translation (∆x,∆y) and change of aspect ratio be-
tween the two boxes.

During test time, we define Xc ⊂ X as the exploration
area for context, which excludes the observed regions of
other contextual classes in the image. Let si ⊂ Xc be the
context region i in a test image. Given an action ak to detect
context class χk at time t, to model the context between
class χk and query class cq , we define a probabilistic vote
map p(cq|χk, si) as follows.

Let (sjk, s
j
l ) be the j-th training pair of co-occurring re-

gions of class χk and cq , and bjk and bjq be their corre-
sponding bounding boxes. Let sik ⊂ Xc be the context
region i detected as class χk in the test image. We re-
trieve those training pairs (sjk, s

j
l ) between class χk and

cq and compute the RBF kernel W (.) measuring the sim-
ilarity of the features of train/test segments of class χk as
W (sik, s

j
k; θW ), where θW is the kernel parameter. We

then model p(cq|χk, Xc) as a weighted vote from the co-
occurring region pairs of classes χk and cq in training
scenes.

p(cq|χk, si) =
1

Zc

∑
i

∑
j

W (sik, s
j
k; θW ).T (bjk, b

j
q) (5)

where Zc is the normalization function. Figure 5 shows a
few examples of vote maps. We can see that with the ex-
emplar based and semantic spatial voting, the resulting vote
maps give more accurate search areas for the query objects.

  

Figure 4: Our context voting model. The first row shows
example training pairs of sky and boat. The second row
shows a test image and the weighted voting map. The ar-
rows denote applying the weighted displacement vectors
T (bjk, b

j
q) from the training pairs to the test pairs of sky and

boat (highlighted in yellow and blue respectively).
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Figure 5: Examples of context vote maps. Each pair of
images corresponds to the original image and the predicted
probability map of object location given observed context.
From (a) - (d) are the vote maps from water to boat, sky to
boat, road to car and grass to cow, respectively. Best viewed
in color.

5. Implementation Details
5.1. Object Proposals

We use MCG object proposals from [3] as object candi-
dates. Since the object proposals mainly cover the objects,
we also generate a small number (20∼30 per image) of seg-
ments using the stable segmentation algorithm from [25] to
cover regions corresponding to contextual classes. To re-
duce computational overhead, our context voting step uses
only the stable segments. The stable segmentation gives a
coarse level of object/context division and reduces the com-
putational complexity of context voting compared to the
large number of finer object proposals, while still maintain-
ing semantic spatial information.

5.2. Datasets

We conduct our experiments on the Pascal VOC
dataset [9], a standard benchmark for object detection.
Since the original dataset does not provide annotation for
segmentation of contextual classes, we train our policy
using the Pascal Context dataset [22] which fully anno-
tates every pixel of the Pascal VOC 2010 train and vali-
dation sets, with additional contextual classes such as sky,
grass, ground, building, etc. We use the 33 context classes
from [22] and train our policy on the Pascal Context training
set, and test our algorithm and baselines on the validation
set using the 20 object classes in the Pascal VOC dataset
as the query classes. We also test our policy on the MSRC
dataset [29] to show our algorithm can generalize to differ-
ent data.

5.3. Feature Representation

To classify object proposals, we extract region features
and classify them using the SDS-C deep neural network
model in [14] fine-tuned on Pascal VOC 2012. For the pol-
icy action classifiers, we use the same model to extract fea-
tures for states represented by the masks of search area Xt



and observed area Ot in state st, then concatenate the fea-
tures as inputs to the policy. For context classifiers we use a
subset of the appearance features for superpixels from [30]
and learn one-vs-all SVM models for classification.

6. Experiments
6.1. Baselines

We compare with two recent popular exhaustive detec-
tion baselines, RCNN [13] and SDS [14]. RCNN adapts
the CNN pretrained for image classification [16] to the task
of object detection by fine-tuning the network on warped
object bounding boxes, then applies the network to extract
CNN features on each object proposal for detection. SDS
further extends RCNN to the task of segmentation by train-
ing and testing on region-based proposals. Both approaches
need to extract features and run class-specific detectors ex-
haustively on all object proposals. We implement our algo-
rithm based on the SDS framework. We also compare with
random search which randomly samples the same number
of object proposals for detection, window selection driven
by context from [2], detection using object proposals in se-
lective search [31] and objectness [1]. For average preci-
sion we also compare with a recently proposed contextual
model in [22] which considers global and local context in
a Markov Random Field framework based on a deformable
part-based (DPM) model. This model has high computa-
tional cost since it needs to evaluate hundreds of thousands
of windows as well as the context deformation term be-
tween all context boxes in the graph.

6.2. Speed-accuracy tradeoff

Figure 6 shows for the Pascal VOC 2010 dataset the
mean average precision (mAP) performance vs the (amor-
tized) number of detectors/classifiers evaluated on the ob-
ject proposals. The amortized number of proposals con-
sists of not only the resulting proposals for the query, but
also the average overhead evaluation including context clas-
sifiers and the Q-value evaluations on the state masks, so
it reflects the total computational cost. Our algorithm has
significantly reduced both the number of object proposals
for the query and the total computation time. Compared to
SDS, the reduction of proposals for the object is 45.3%, and
the overall reduction of time is 36%. Empirically it takes
SDS about 13.3s to evaluate features for 2000 proposals for
a class. With our algorithm, the average number of object
proposal drops 45.3% resulting in computation of around
7.1s, plus about 0.8s for evaluating Q-values and 0.6s for
context detectors. This is a 36% reduction in amortized
run time. With increasing numbers of object proposals, our
algorithm can achieve even better results than exhaustive
methods due to the reduction of false positives. We also see
the random search approach performs poorly, showing the

effectiveness of our context driven search approach.
In comparison to [2], which is closely related to our ap-

proach, context class lookup in [2] is between 2.55 and
5.7s+0.26s to update the vote map, while our method only
takes 0.6s, achieving 7x∼10x speedup. Although we use
MCG object proposals that are already highly precise in ob-
ject location, we still achieve over 45% reduction on aver-
age.

In comparison to the recent related work [7], they se-
quentially transform the bounding boxes for queries using
a Deep Q-Network. However, after processing 200 win-
dows their mAP on Pascal VOC 2007 is 46.1% which is a
significant loss in mAP compared to RCNN’s 54.2%. Our
approach, in contrast, achieves similar mAP to the RCNN
baseline on the Pascal VOC 2010 dataset after processing
200 windows(43.4% vs. 44.0%), which shows a better
speed-accuracy trade-off. Note that these numbers are not
directly comparable because the datasets are different (VOC
2010 contains a subset of the VOC2007 images).

6.3. Detection precision

Table 1 shows the classwise mAP of our 20 questions
approach with other context based methods and their corre-
sponding baselines. We compare our model with SDS and
RCNN as well as [22] denoted as “Pascal 20/30 Context” in
the table, and deformable part-based model with context de-
noted as “DPM(+context)”. Both the SDS and the 20 ques-
tion methods start with 2000 object proposals per image.
Our 20 question detection approach outperforms exhaus-
tive search baselines SDS and RCNN as well as DPM based
context approaches while reducing 45.3% of proposals.We
can see that classes that empirically enjoy strong contextual
relations with other objects in the scenes have significant
gain in precision over exhaustive search, such as boat, car,
chair, cow, sofa etc..

6.4. Search space accuracy

To measure the quality of our predicted search areas,
we evaluate the mean intersect vs. union (IU) of the
search areas produced by our 20 questions approach with
the groundtruth objects. We compare with the search area
of the original detector, produced by the union of the ob-
ject proposals with high scores. We also compare with the
search area generated by the “Oracle”, which is defined as
the search area predicted by the optimal sequence among
all paths explored during depth-first search. The mean IU
of the original detectors, our 20 questions approach and the
oracle are 64.12%, 73.9% and 78.2% respectively. We can
see that our approach significantly improves the accuracy
of overlap between the predicted search area and the tar-
get query object. We also find that the mean IU of the 20
questions search space is close to that predicted by the ora-
cle trajectory, which shows that reinforcement learning has



Table 1: Avg. detection precision of ours and other algorithms on Pascal VOC10 dataset.
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Figure 6: Speed-accuracy tradeoff mAP vs. number
of amortized evaluated object proposals on Pascal VOC
dataset. Best viewed in color.

learned a good policy that closely mimics the oracle’s be-
havior.
6.5. Simultaneous detection and segmentation

Given that we employ segment based object proposals
generated by [3], our detection system can also perform seg-
mentation. We compare our algorithm with [14] in the si-
multaneous detection and segmentation task using the AP r

metric proposed in [14]. Table 2 and Table 3 show the per-
formance on Pascal VOC10 and the MSRC datasets respec-
tively. We outperform the SDS approach on both datasets,
showing our 20 questions algorithm can generalize well
from the detection to the segmentation task, as well as gen-
eralize to other datasets such as MSRC.

Figure 7 shows some qualitative results of for detection
and segmentation of the MSRC object classes. We can see
that using our sequential search approach the localization of
the objects is more accurate because of the refined search ar-
eas, while the the probabilities are higher on the true object
locations given observed context.

7. Conclusion

We propose a generic approach for object detection and
segmentation as a sequential and dynamic process, in which

a policy actively selects a context-related question adapt-
ing to a query and responses from previous context-related
questions, then more accurately refines the search area or re-
jects the object query early without running many detectors.
We frame the object detection problem as a Markov De-
cision Process to learn a policy by reinforcement learning.
We use non-parametric spatial models to represent semantic
context between objects. To demonstrate the efficacy of our
approach, we apply this active detection scheme to a recent
object detection and segmentation framework, and achieved
higher average precision compared to the baselines with sig-
nificant computational savings.
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Table 2: APr performance of simultaneous detection and segmentation on Pascal VOC10 dataset.
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Table 3: APr performance of simultaneous detection and segmentation on MSRC dataset.

cow sheep bird chair cat dog boat body car bike plane mean
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SDS+20Q 88.4 93.8 45.8 48.3 82.6 76.7 51.7 65.5 79.0 85.2 95.7 73.2

(a) (b) (c) (d) (a) (b) (c) (d)

Figure 7: Qualitative results for detection and segmentation of the MSRC object classes. Columns (a) to (d) correspond to
the original image, groundtruth label, probability map of the query object given by exhaustive search and by our sequential
search respectively. The probability map from red to blue corresponds to the probability from high to low. Best viewed in
color.
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