Cost-sensitive Dynamic Feature Selection

He He
Hal Daumé II1

HHEQCS.UMD.EDU
HALQUMIACS.UMD.EDU

Dept. of Computer Science, University of Maryland, College Park, MD

Jason Eisner

JASON@QCS.JHU.EDU

Dept. of Computer Science, Johns Hopkins University, Baltimore, MD

Abstract

We present an instance-specific test-time dy-
namic feature selection algorithm. Our al-
gorithm sequentially chooses features given
previously selected features and their val-
ues. It stops the selection process to make
a prediction according to a user-specified
accuracy-cost trade-off. We cast the sequen-
tial decision-making problem as a Markov
Decision Process and apply imitation learn-
ing techniques. We address the problem of
learning and inference jointly in a simple mul-
ticlass classification setting. Experimental
results on UCI datasets show that our ap-
proach achieves the same or higher accuracy
using only a small fraction of features than
static feature selection methods.

1. Introduction

In a practical machine learning task, features are usu-
ally acquired at a cost with unknown discriminative
powers. In many cases, expensive features often im-
ply better performance. For example, in medical di-
agnosis, some tests can be very informative (e.g., X-
ray, electrocardiogram) but are expensive to run or
have side-effects on human body. Oftentimes, while
at training time we can devote large amounts of time
and resources to collecting data and building models,
at test time we may not afford to obtain a complete
set of features for all instances. This leaves us the
cost-accuracy trade-off problem.

We consider the setting where a pretrained model us-
ing a complete set of features is given and each feature

Presented at the International Conference on Machine
Learning (ICML) workshop on Inferning: Interactions be-
tween Inference and Learning, Edinburgh, Scotland, UK,
2012. Copyright 2012 by the author(s)/owner(s).

has a known cost. At test time, we would like to dy-
namically select a subset of features for each instance
and be able to explicitly specify the cost-accuracy
trade-off. This can be naturally framed as a sequential
decision-making problem. Assume each test instance
comes with zero feature or a subset of free features.
At each step, based on the instance’s current feature
set, we decide whether to stop acquiring features and
make a prediction; if not, which feature(s) to purchase
next.

A direct solution is to cast this as a Markov Deci-
sion Process. This allows us to search for an optimal
purchasing policy under a reward function that com-
bines cost and accuracy (Section 2). We propose to de-
compose inference as sequence of simple classification
tasks and learn the classifiers using imitation learning
methods (Section 3). A typical approach to imitation
learning is to define an oracle that executes the op-
timal policy based on the reward function; using the
oracle-generated examples as supervised data, one can
learn a classifier/regressor to mimic the oracle’s be-
havior. However, sometimes the optimal actions can
be too good for the agent to imitate due to limitation
of the learning policy space. In such cases, instead
of labeling data with the maximum reward action, we
label them with a suboptimal action that the current
model prefers and has a high reward (Section 4). Intu-
itively, this allows the learner to move towards a better
action without much effort and to achieve the best ac-
tion gradually instead of aiming at an impractical goal
from the beginning.

Our main contribution is developing a novel imitation
learning framework for test-time dynamic feature se-
lection. Our model does not have any constraint on
the type of features and the pretrained model; and we
allow users to explicitly specify the trade-off between
accuracy and cost.

Submission and Formatting Instructions for ICML 2012

2. Dynamic Feature Selection as an
MDP

In a typical supervised classification setting, we have
a training set {(x1,y1) ... (€n,yn)} and have access to
all the feature values. We assume that we are pro-
vided with a pretrained classifier that takes instances
with full sets of features. We will refer to the pre-
trained classifier as data classifier in the sequel. At
test time, each instance comes with zero feature or a
small set of free features, while other features have to
be obtained at a cost. The precise definition of cost is
problem-dependent, for instance the computation time
or the expense of running an experiment. Our goal is
to achieve high accuracy without spending too much
on acquiring features.

We represent the dynamic feature selection process as
a Markov Decision Process (MDP). The state includes
features selected so far, thus we have an exponentially
large state space of size 27, where D is the total num-
ber of features. The action space includes all features
that have not been acquired yet and the termination
action which leads to the goal state (i.e. stop adding
more features and make a prediction). An agent fol-
lows a memoryless policy m that determines which ac-
tion to choose in state s, i.e., m(s) — a, making the
action sequence behaves like a Markov chain. We al-
low the agent to select more than one feature at a time
(e.g. using feature templates); and we will call these
bundled features a factor below.

In the MDP setting, achieving an accuracy-cost trade-
off corresponds to finding the optimal policy under
a reward function. The reward function should al-
low us to explicitly specify the trade-off. When con-
sidering a single instance, we use the margin given
by the data classifier to reflect accuracy. Let) be
the set of labels/classes. We denote score(s,y) the
score of class y using features in state s. Given an
instance (x;,y;), we define the margin in state s as
score(s, y;) — MaxX,ey\ fy,} Score(s,y). At each time
step t, we define the immediate reward r in state s;
after taking action a; as

r(st, at) = margin(sg, at) — A - cost(sg,ar) (1)

Here margin(st, a;) and cost(s:, a;) denote the margin
and cost after adding the factor given by a; respec-
tively; A is the trade-off parameter. When classifying
using an incomplete feature set, we set values of non-
selected features to be zero. Using a sparse feature vec-
tor also improves classification efficiency at test time.

3. Imitation Learning for Dynamic
Feature Selection

A typical approach to imitation learning is to predict
the oracle’s action by solving a sequence of multiclass
classification problems. To apply supervised classifi-
cation methods, we define a forward-selection oracle
that generates labels and a feature map that describes
the state.

3.1. Imitation Learning via Classification

In a typical imitation learning task, at training time
we have an oracle to demonstrate optimal actions that
maximize the reward. Then we collect a set of tra-
jectories generated by the oracle. The agent attempts
to imitate the oracle’s behavior without any notion of
the reward function. Thus maximizing the expected
reward is reduced to minimizing a surrogate loss with
respect to the oracle’s policy .

To mimic the oracle’s behavior, we train a multiclass
classifier to predict the oracle action. Let s, denote
states visited by w. We collect training examples
{(¢(Sr*), 7 (8x+))} by running the oracle, where ¢ is
a feature map describing the state.

We denote II the policy space and £(s,) the surrogate
loss (classification loss) of m with respect to 7*. Using
any standard supervised learning algorithm, we can
learn a policy (action classifier)

7 =argmin E,_, [{(s,)] (2)

well

Here ¢(s,) can be any loss function used by the chosen
classifier, for example, hinge loss in SVM. Let J(7) be
the task loss (negative reward) that we actually want
to minimize. Denote T the task horizon. We have the
following guarantee:

Theorem 1. (Ross & Bagnell, 2010) Let
Es_ . [(s,7)] =€, then J(m) < J(n*) + T?e.

This theorem shows that we can bound the task loss
by how well the agent mimics the oracle.

3.2. Oracle Actions

Ideally, an oracle action should lead to a subset of
features having the maximum reward. However, we
have too large a state space to search for the optimal
subset of features exhaustively. In addition, given a
state, the oracle action may not be unique since the
optimal subset of features does not have to be selected
in a fixed order.

We address the problem by using a greedy forward-
selection oracle. At time step ¢, the oracle iterates

Submission and Formatting Instructions for ICML 2012

through the action space A; and calculates each ac-
tion’s reward r(s¢,a) (@ € A;) in state s;; it then
chooses the action that yields the maximum imme-
diate reward. To identify the stop point, the or-
acle continues adding factors until all are selected.
It then set the action in the maximum-reward state
to be stop. Formally, let af = arg maxgca, 7(s¢,a)
and r; = r(s,af). This gives us a trajectory 7 =
(50,a8, 7G5 - -+, ST, @,). Let mmax be the maximum
reward in T step. We define the oracle’s policy as

. | a; it 7(st,af) < rmax
™ (s) = { stop otherwise

3)

In other words, the oracle stops in the maximum-
reward state. Adding factors after the stop action will
decrease the reward.

3.3. Policy Features

We define ¢(s) as concatenation of features in the cur-
rent state and meta-features that provide information
about previous classification results and cost. More
specifically, we have the following meta-features: con-
fidence score given by the data classifier; change in con-
fidence score after adding the previous factor; boolean
bit indicating whether the prediction changed after
adding the previous factor; cost of the current feature
set; change in cost after adding the previous factor;
cost divided by confidence score; current guess of the
model. As ¢(s) can contain first-order history infor-
mation along the trajectory, predicting each action in
turn allows the learner to learn dependencies between
actions implicitly.

4. Iterative Policy Learning

One drawback of the above approach is that it ignores
difference between state distribution of the oracle and
the agent. When it cannot mimic the oracle perfectly
(i.e. classification error occurs), the wrong action
will change the following state distribution. Thus the
learned policy is not able to handle situations where
the agent follows a wrong path that is never chosen by
the oracle. In fact in the worst case, performance can
approach random guessing, even for arbitrarily small
e (K&aridinen, 2006).

This problem can be alleviated by iteratively learning
a policy trained under states visited by both the oracle
and the agent. For example, during learning one can
use a “mixture oracle” that at times takes an action
given by the previous learned policy (Daumé III et al.,
2009). Alternatively, at each iteration one can learn
a policy from trajectories generated by all previous
policies (Ross et al., 2011).

4.1. Dataset Aggregation

In its simplest form, the Dataset Aggregation (DAg-
ger) algorithm (Ross et al., 2011) works as follows. In
the first iteration, we initialize m to 7* and collect
training set D; = {(¢(Sx+), 7*(Sx+))} from the oracle
to learn a policy 7. In the next iteration, we collect
trajectories by executing 7o and label ¢(s,) with the
oracle action, i.e. Dy = {(¢(Sr,), T (Smy)) }; 73 is then
learned on D |JD3. We repeat this process for sev-
eral iterations. At each iteration the policy is trained
on datasets collected from all previous policies. In-
tuitively, this enables it to make up for past failures
to mimic the oracle. Algorithm 1 shows the training
process.

Let Q7 (s,7) denote the t-step cost of executing 7 in
the initial state and then running 7’. We assume that
if 7w picks a different action from 7*, it results in at
most loss u along the trajectory. Suppose £(s,n) is
a convex loss upper bounding the 0-1 loss, which is
common for most classification algorithms. We can
generalize Theorem 1 to policy running under its own
induced state distribution:

Theorem 2. (Ross et al., 2011) Let Es_[¢(s,7)] = €
and QF_, 1 (s,m) — QF_,,1(s,m*) < u, then J(m) <
J(m*) + uTe.

Let ey = mingena Zfil Es, [¢(s,m)] be the mini-
mum loss we can achieve in the policy space II. We de-
note the sequence of learned policies 71, ma, ..., 7N by
m1.n- Ross et al. showed that for DAgger, there exists
apolicy m € .y such that Eg_[€(s,7)] < en+O(1/T).
More specifically, applying Theorem 2, in the infinite
sample case we have

Theorem 3. (Ross et al., 2011) For DAgger, if
QF_yp1(s8,m) = QF_y 1 (5,7) < w and N is O(uT),
there exists a policy m € m.y s.t. J(m) < J(7*) +
uTeny + O(1).

This theorem holds in the finite sample case as well.
Readers are referred to (Ross et al., 2011) for detailed
analysis.

4.2. DAgger with Coaching

In most cases, our oracle can achieve high accuracy
with rather small cost. Considering a linear classifier,
as the oracle already knows the correct class label of an
instance, it can simply choose, for example, a positive
feature that has a positive weight to correctly classify
a positive instance. In addition, in the start state even
when ¢(sg) are almost the same for all instances, the
oracle may tend to choose factors that favor the in-
stance’s class. Since the optimal policy space is far

Submission and Formatting Instructions for ICML 2012

Algorithm 1 DAgger for Feature Selection
Input: {(z1,91),...,(®n,yn)}
Initialize D < 0
Initialize] < 7*
for i =1to N do
for j =1tondo
Remove factors from x;
Sequentially add factors to «; until stop
Dy = Dy U{($(sm,) 7" (510))}
end for
D=DD;
Train classifier m;41 on D
end for
Return best 7 evaluated on validation set

from the learning policy space and some environment
information known by the oracle cannot be sufficiently
represented by the policy feature, the oracle’s behav-
ior is too good to imitate for the learner. In the ex-
periment, we observe a substantial gap between the
oracle’s performance and the agent’s.

We address this problem by defining a coach 7* in
place of the oracle. The coach demonstrates subopti-
mal actions that are not much worse than the oracle
action but are easier to learn within the learner’s abil-
ity. Let score,(a) be a measure of how likely m chooses
action a, such as confidence level given by the action
classifier. Similar to Chiang et al. (2008), we define
a hope action that combines the task loss and score
given by the current policy.

ay = argmax 7 - scorey, (a) + (s, a) 4)

acAy

Our intuition is that when the learner has difficulty
following the teacher, instead of being authoritative,
the teacher should lower the goal properly. We use ay
that the current policy prefers and has a relatively high
reward, because a; may not be achievable within the
agent’s learning ability. The parameter n specifies how
permissive the coach is for allowing the agent to follow
its will if this helps increase the reward. We gradually
shrink 7 to let the coach approach the oracle. In this
way we avoid the situation where an oracle action is
far from what the model prefers that causes drastic
change to the policy. It is hoped that gradually the
learner can achieve the original goal in a more stable
way.

5. Experimental Results

We perform experiments on three UCI datasets: radar
signal (binary), digit recognition (10 classes) and im-

age segmentation (7 classes). Our baselines are two
static incremental feature selection methods. Both use
a fixed queue of features and add them one by one.
The first ranks features according to standard forward
feature selection algorithm without any notion of the
cost. The second uses a cost-sensitive ranking criteria:
wy/cost, where wy is the weight of a factor f given
by the data classifier. The weight is defined by the
maximum absolute value of its features.

5.1. Experiment Setting

For all datasets, the data classifier are trained using
MegaM (Daumé III, 2004). However, since we assume
the provided classifier is to be used at test time, using
it at training time may cause difference in the distribu-
tion of training and test data for feature selection. For
example, the confidence level in ¢(s) during training
can be much higher that that during testing. There-
fore, similar to cross validation, we split the training
data into 10 folds. We collect trajectories on each fold
using a data classifier trained on the other 9 folds.
This provides a better simulation of the environment
at test time.

For the digit dataset, we split the 16 x 16 image into
non-overlapping 4 x 4 blocks and each factor contains
the 16 pixel values in a block. For the other two
datasets, each factor contains one feature.

We choose 7 values (0, 0.1, 0.25, 0.5, 1, 1.5, 2) for the
trade-off parameter A. The base classifier in is a linear
SVM trained by Liblinear (Fan et al., 2008). We run
for 15 iterations and use the best policy tested on a
development set. For coaching, we set the initial n to
be 0.5 and decrease it by e™! in each iteration.

5.2. Result Analysis

We first compare the learning curve of DAgger and
Coaching over 15 iterations on the digit dataset with
A = 0.5 in Figure 1(a). We can see that DAgger
makes a big improvement in the second iteration, while
Coaching takes smaller steps but achieves higher re-
ward gradually. In addition, the reward of Coaching
changes smoothly and grows stably, which means it
avoids drastic change of the policy. Figure 1(b) to
Figure 1(d) show the accuracy-cost curves. We can see
that our methods achieve comparable or even higher
classification accuracy than using a complete set of
features at a small cost. This can be explained by the
dynamic selection scheme: for easy examples, we can
make a decision with a small number of factors; only
for hard examples do we need to acquire expensive
factors. We also notice that there is a substantial gap
between the learned policy’s performance and the ora-

Submission and Formatting Instructions for ICML 2012

0.55r

0.45¢

«—e DAgger
~—— Coaching

0436 028 030 032 034 036 038
average cost per example

(a) Reward of DAgger and DAgger+

0.9r 2
0.8
>
O
© 0.7r
S
(9]
(]
© 0.6 +——+ |w|/cost
= Forward
0.5t o—e DAgggr |
»~—a Coaching
+ -+ Oracle
06 L L L L
.0 0.2 0.4 0.6 0.8 1.0

average cost per example
(c) Digit dataset (16 factors).

cle’s, however, in almost all settings Coaching achieves
higher reward, i.e. higher accuracy at a lower cost as
shown in the figures.

6. Related Work

The work that has a problem setting most similar to
ours is a recent study on active classification (Gao &
Koller, 2010) in multiclass classification tasks. Based
on value of information, they defined value of clas-
sifier to learn a probabilistic model that sequentially
chooses which classifier to evaluate for each instance
at test time. Our work is also related to budgeted
learning. Kapoor & Greiner (2005) considered the
problem of active model selection via standard rein-
forcement learning techniques. However, their results
showed that it is inferior to simple and intuitive poli-
cies. Recently, Reyzin (2011) approached the problem

ded ke ke K — — — - — - - *

0.95+
0.90f %
> 0.85r :
o
o
S 0.80r
(9]
(@]
© 0.75F |w|/cost
x—= Forward
0.70 e—e DAgger
0.65 +— Coaching|
* -+ Oracle
0680 0.2 0.4 0.6 08 1.0
average cost per example
(b) Radar dataset (32 factors).
0.90f ARSI -
i
*
0.85¢
o
© 0.80r
3
O 0.75} :
© |w|/cost
0.70f ~— Forward
e—e DAgger
0.65f »~—a Coaching|{
* -+ Oracle
0685 0.2 0.4 0.6 08 1.0

average cost per example
(d) Segmentation dataset (19 factors).

by training an ensemble classifier consisting of base
learners trained on each feature. This method is con-
strained to binary classification though.

7. Conclusion and Future Work

We propose a dynamic feature selection algorithm that
automatically trades off feature cost and accuracy at
the instance level. We formalize it as an imitation
learning problem and propose a coaching scheme when
the optimal action is too good to learn. Experimental
results show that our method achieves high accuracy
with significant cost savings. One future direction is
to explicitly include feature dependency and learn fea-
ture weights jointly. We are also interested in applying
our method to structured prediction problems where
policy features may require inference under selected
features and cost may not be known until run time.

Submission and Formatting Instructions for ICML 2012

Acknowledgements

We thank Jiarong Jiang, Adam Teichert and Tim
Vieira for helpful discussions that improves this pa-
per.

References

Chiang, D., Marton, Y., and Resnik, P. Online large-
margin training of syntactic and structural transla-
tion features. In EMNLP, 2008.

Daumé III, Hal. Notes on cg and lm-bfgs optimization
of logistic regression. 2004. Software available at
http://www.cs.utah.edu/~hal/megam/.

Daumé III, Hal, Langford, John, and Marcu, Daniel.
Search-based structured prediction. Machine Learn-
ing Journal (MLJ), 2009.

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui,
Wang, Xiang-Rui, and Lin, Chih-Jen. LIBLINEAR:
A library for large linear classification. Journal of
Machine Learning Research, 9:1871-1874, 2008.

Gao, Tianshi and Koller, Daphne. Active classification
based on value of classifier. In NIPS, 2010.

Kéaridinen. Lower bounds for reductions. In Atomic
Learning Workshop, 2006.

Kapoor, A. and Greiner, R. Reinforcement learning for
active model selection. In Proceedings of the 1st in-
ternational workshop on Utility-based data mining,
pp. 17-23. ACM, 2005.

Reyzin, Lev. Boosting on a budget: sampling for
feature-efficient prediction. In ICML, 2011.

Ross, Stéphane and Bagnell, J. Andrew. Efficient re-
ductions for imitation learning. In AISTATS, 2010.

Ross, Stéphane., Gordon, Geoffrey J., and Bagnell,
J. Andrew. A reduction of imitation learning and
structured prediction to no-regret online learning.
In AISTATS, 2011.

http://www.cs.utah.edu/~hal/megam/

